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Malicious

Al Models
Undermine
Software
Supply-Chain
Security

INTEGRATING MALICIOUS AI models® into software
supply chains presents a significant and emerging
threat to cybersecurity. The attackers aim to embed
malicious AI models in software components and
widely used tools, thereby infiltrating systems at a
foundational level. Once integrated, the malicious Al
models execute embedded unauthorized code, which
performs actions such as exfiltrating sensitive data,
manipulating data integrity, or enabling unauthorized
access to critical systems. Compromised development
tools, tampered libraries, and pre-trained models are
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the primary methods of introducing
malicious AI models into the software
supply chain. Developers often rely on
libraries and frameworks to import
pre-trained AI models to expedite soft-
ware development. Attackers can easily
compromise the underlying system if
the application consumes pre-trained
Al models tainted with malicious code.
For instance, the MLOps platform*
fails to detect malicious AI models af-
ter scanning the model file containing
serialized data. Deploying a malicious
Al model would jeopardize the security
of the systems and could put end users
atrisk in some applications.

The sophistication of these mali-
cious AI models allows them to adapt
and evade traditional security mea-
sures by leveraging their ability to ana-
lyze vast amounts of data, learn com-
plex patterns, and generate responses
that mimic human behavior. These
malicious AI models can simulate di-
verse attack scenarios, discover previ-
ously unknown vulnerabilities, and
create evasive techniques that tradi-
tional defenses, reliant on predefined
signatures and heuristics, struggle to
detect. It is also important to note that
adversaries can exploit vulnerabilities
in the AI framework or the environ-

key insights

B Attackers inject malicious code into Al
models hosted on the public repositories.
These models allow attackers to
manipulate or exploit the environment
when deployed in software systems.
Incorporating malicious Al models
in dependencies or libraries also
compromises the integrity of software
products downstream.

m Malicious Al models are distributed
to compromise the software supply
chain and trigger infections on a large
scale. The absence of rigorous testing
or verification processes for Al models
allows adversaries to inject malicious
functionality into them.

B Organizations need robust processes
to validate the origin and integrity of Al
models. Organizations should use trusted
repositories, cryptographic validation,
and controlled access to mitigate risks
associated with third-party Al models.
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ment when the AI model is deployed,
such as weaknesses in deserialization
processes or insufficient validation
checks. This underscores the need for
constant vigilance and proactive mea-
sures to secure Al systems. Integration
of Al models without adequate security
checks can lead to the execution of un-
authorized code. AI models, especially
those shared via untrusted sources,
may contain embedded malicious
code or payloads that can be triggered
during execution. Attackers can tam-
per with the model weights, scripts,
or dependencies to insert hidden mal-
ware or back doors, allowing for unau-
thorized code execution once the mod-
el is loaded into memory. The absence
of robust security checks, sandboxing,
or code-integrity verification can lead
to arbitrary code execution, underscor-
ing the critical need for stringent secu-
rity measures.

Detecting and mitigating malicious
AI models is challenging due to their
complexity and opacity. First, AI mod-
els are distributed as opaque files (for
example, model weights) containing
parameters learned during training.
As these parameters can be tampered
with, AI models act maliciously when
specific triggers are activated, making
it challenging to distinguish between a
benign and compromised model with-
out deep analysis. Second, AI models
rely on external dependencies and
frameworks, and attackers can exploit
vulnerabilities in these libraries to in-
troduce malicious payloads. Third, Al
models are deployed in environments
that lack proper validation or isolation
mechanisms, allowing malicious code
hidden within a model to execute un-
detected. Several existing solutions
aim to address these issues, such as
secure model validation to check the
integrity of models before they are de-
ployed. Another key solution is to use
a secure model serialization format,
such as Safetensors,'® for AI models.
This format provides a robust way to
verify the embedded code, offering a
sense of reassurance about the safety
of the AT models. In addition, model
watermarking involves embedding
models with unique identifiers to ver-
ify their source and integrity. Sandbox-
ing models in isolated execution envi-
ronments is another technique that
mitigates the risk of malicious code

execution by containing any harmful
behavior within a controlled space.
Despite these solutions, the constantly
evolving nature of Al-based threats
makes it essential for organizations to
continuously adapt and integrate mul-
tiple layers of security by building a
holistic approach to security to defend
against malicious AI models. Overall,
malicious AI models are programmed
to recognize and adapt to differ-
ent security environments. They can
identify patterns in security protocols
and learn to avoid detection by mim-
icking normal system behavior. This
adaptability makes them particularly
dangerous because they can remain
dormant and undetected for extended
periods, only activating under specific
conditions to execute their malicious
payload. This stealthy nature of at-
tacks using AI complicates incident re-
sponse efforts because traditional de-
tection methods may not be effective
against such advanced cyber threats.

Research contributions of this
work. Considering the above, this ar-
ticle makes the following contribu-
tions. First, we describe the AT model
integration process and discuss threat
classification and associated attack
payloads. Second, we present a com-
plete attack flow model explaining
how attackers use malicious AI mod-
els to compromise the target systems.
Third, we discuss the limitation of tra-
ditional security defenses to restrict
the impact of malicious AI models.
Fourth, we discuss recommendations
with granularity, which organizations
can opt to strengthen software supply-
chain security.

Understanding the Al Model
Integration Process

Hosting AI models in a repository is a
crucial aspect of modern AI develop-
ment and deployment.” The reposito-
ries hosting AI models are centralized
locations where models, metadata,
dependencies, and documentation
are stored securely, facilitating easy
access and collaboration. The AI mod-
els deployed in the repositories are
often open source, allowing users to
directly deploy them in the produc-
tion environment or fine-tune those Al
models for specific use cases. By host-
ing AI models in a repository, organi-
zations can ensure consistency across
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different stages of development, from
training to maintenance control over
model versions and updates. Reposito-
ries such as Hugging Face, TensorFlow
Hub, PyTorch Hub, and Model Zoo of-
fer additional features over traditional
model-hosting and version-control
systems such as GitHub. These fea-
tures include model discovery; built-in
tools for model evaluation, including
model training, integrated inference
application programming interfaces
(APIs), private model hosting, sharing
pre-trained models; and integration
with various machine learning (ML)
frameworks.

The AI model integration process
involves transferring a pre-trained
model from an external source or re-
positoryinto alocal development envi-
ronment or application for further use
or fine-tuning. This process typically
starts by selecting the appropriate
model from a repository, which pro-
vides models in various formats. Once
selected, the model is downloaded and
loaded into the chosen ML framework,
such as TensorFlow or PyTorch, using
standardized functions or APIs. Dur-
ing integration, it is crucial to ensure
that the model’s architecture, depen-
dencies, and input-output configura-
tions are compatible with the existing
environment. The model may undergo
additional steps, such as fine-tuning
domain-specific data, integration
into a larger system, or deployment
in a production environment. Under-
standing the complete AI model inte-
gration process is essential to dissect
the associated risks and threats. Table
1 presents the workflow of integrating
the AT model.

By following the steps in Table 1, us-
ers can effectively import pre-trained
AI models from repositories for devel-
opment.

Threat Modeling:

Malicious Al Models

Threat modeling® offers a structured
framework for understanding threats.
The primary importance of threat
modeling lies in its proactive nature,
allowing organizations to anticipate
and mitigate risks before malicious
actors can exploit them. The goal is
to develop a systematic approach for
identifying, assessing, and addressing
potential security threats to applica-



tions, systems, or networks. This sec-
tion discusses malicious AI models,
threat classification, attack payloads,
and attack flow models specifically for
malicious AI models impacting soft-
ware supply chains.

Understanding malicious AT mod-
els. A malicious AI model is designed
or tampered with to cause harm or
act against the intended purpose of
the system it’s integrated into. While
many might assume that an AI model
is simply a tool for prediction or classi-
fication, like predicting sentiment in a
text, malicious actors can exploit these
models in various ways to compromise
security, privacy, and integrity. Several
examples of malicious AI models are
listed below.

Embedding malicious code in model
artifacts. To speed up development, a
user downloads a pre-trained model
from an online repository. The mod-
el file is embedded with malicious
code that executes when the model is
loaded, taking advantage of the load-
ing process to infect the system. This
could compromise the system, giving
attackers control over the host ma-
chine, enabling data exfiltration, or
spreading the malware further. In re-
al-world scenarios, Python pickle files
have been used to embed malicious
code within AI models, exploiting the
deserialization process in Python.
Pickle is a Python-specific serializa-
tion format for AI models. Still, the
inherent security flaw for trusting the
deserialized data allows the execution
of embedded code, creating a serious
security risk. Researchers demonstrat-
ed how a malicious pickle file could
execute arbitrary code during deseri-
alization using the sleepy pickle attack
technique.?®* Listing 1 highlights the
basic code of a pickle file embedded
with malicious code.

In the code presented in the listing,
the pickle.loads() function is called,
and the embedded malicious com-
mand (os.system ("rm-rf/")) is executed,
causing catastrophic damage, such as
deleting files on the system. When an
AI model is executed using the mali-
cious pickle file, the embedded code
runs in that environment without the
user’s knowledge. In other more prom-
inent attack scenarios, attackers can
distribute pre-trained AI models and
users might unknowingly download

research and advances

Table 1. Basic workflow for integrating an Al model from the repository.

Integration Steps

Description

Choose repository

Select a repository or platform where the desired pre-trained model is hosted.
Standard repositories include:

» GitHub: A platform for hosting open source projects, including AI models.

» Hugging Face Model Hub: A repository for hosting and sharing pre-trained
natural language processing models.

» TensorFlow Hub: A platform for sharing AL models compatible with the Tensor-
Flow framework.

» PyTorch Hub: A repository for sharing AL models compatible with the PyTorch
framework.

Identify model

Select the specific model to import from the repository. Hosted models are
organized by task, architecture, or domain.

Install required
packages

Install the necessary libraries or packages to interact with the repository

and download the model. The list below includes widely used packages or

dependencies.

» Hugging Face Model Hub: Install the transformers library using pip (pip install
transformers).

» TensorFlow Hub: Install TensorFlow and TensorFlow Hub (pip install tensorflow
tensorflow-hub).

» PyTorch Hub: Install PyTorch (pip install torch).

Import model

Import the desired model into one's Python environment using the appropriate
library or framework.
» Hugging Face Model Hub (using transformers library):
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained
(“distilbert-base-uncased”)
» Tensor Hub:
import tensorflow_hub as hub
model = hub.load(“https://tinyurl.com/22ts9aop”)
» PyTorch Hub:
import torch
model = torch.hub.load(‘pytorch/vision’, ‘resnet18’, pretrained=True)

Verify compatibility

» Verify that the model’s input and output formats match the data pipeline. If
necessary, adjust preprocessing steps to ensure compatibility.

» Ensure that the local framework and hardware (for example, CPU vs. GPU) sup-
port the model’s layers, activation functions, and other components.

Customize and
fine-tune

> Adapt the model to a specific dataset using fine-tuning by continuing training on
the data. Modify hyperparameters such as learning rate, batch size, or optimizer
to better suit the training dataset or objectives.

Test and optimize

» Run tests to ensure the model behaves as expected in the local environment.
These tests include validating the model’s accuracy, performance, and response
to operational parameters—including rare and unexpected inputs.

» Optimize the model for faster inference, lower memory usage, or deployment
on edge devices. Tools such as TensorFlow Lite, ONNX Runtime, or PyTorch’s
TorchScript can help with optimization.

Save the model

» Once imported and possibly modified, save the model in a local directory with a
transparent versioning scheme that enables tracking changes and reverting to
previous versions if necessary.

Deploy the model

» If the model is intended for production, deploy it using appropriate tools and
frameworks. This involves setting up inference pipelines and scaling strategies.
Inference pipelines cover structured steps an AI model follows to process input
data and generate predictions. Scaling strategies ensure the system handles the
load by dynamically allocating resources for optimizing inference operations.

Listing 1. Example code highlighting malicious payload in a pickle object.

import pickle

# This is a destructive command
malicious _ code = ‘import os; os.system(“rm -rf /)’
malicious pickle = pickle.dumps(malicious _ code)

# Simulating deserialization (execute the malicious payload)
pickle.loads(malicious _ pickle)
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Table 2. Threat model—risks and impacts of malicious Al model.

Threat Category Techniques

Description

Development
environments as
attack launchpads

Embedding malicious
code

Insert back doors or vulnerabilities into software
during the development process to gain unauthorized
access to systems.

Trojanized packages

Inject arbitrary code into packages and libraries to

compromise the products.

Dependency hijacking

Substitute legitimate dependencies with malicious

versions to execute unauthorized operations.

Dependency chaining

Exploit transitive or indirect dependencies to introduce

malicious code into software systems.

Dependency confusion

Exploiting naming conventions or dependency-

resolution mechanisms to substitute legitimate
components with malicious alternatives.

Data theft Source code theft

Extracting code constructs specific to repositories to

discover security vulnerabilities.

Data exfiltration

Exfiltrate sensitive information from development

environments, such as API keys, credentials, and
configuration files.

Disrupting code
build and pipeline
operations

Subverting software
build operations

Sabotage software builds by injecting errors or
modifying build scripts, causing delays and disruptions
in the release cycle.

Circumventing
deployment operations

Exploit vulnerabilities in continuous integration/
continuous delivery (CI/CD) pipelines to introduce

malicious code or alter deployment processes,
leading to compromise.

Subverting the
integrity of software

Injecting unauthorized
code

Injecting unauthorized code that alters the behavior
of software products leads to data breaches,

unauthorized data manipulation, or denial of service.

Data poisoning and
corruption

Corrupting the training data used by AI/ML models
can cause them to behave unpredictably or produce

incorrect outputs.

Dynamic code loading

Load and execute malicious code on compromised

systems from remote servers.

Security controls Code obfuscation

evasion

Apply obfuscation techniques to disguise payloads to
bypass existing security defenses.

Polymorphic code

Generate code variants using polymorphism to bypass

detection mechanisms.

compromised models serialized as
pickle files.

AI model poisoning. A user deploys
a pre-trained AI model updated peri-
odically with new data (for example, a
recommendation system or fraud-de-
tection model). An attacker injects ma-
licious data into the training process
by tampering with the data sources,
causing the model to learn incorrect
patterns. For instance, a model might
recommend harmful content or fail to
detect fraudulent transactions. This
could result in reputational damage,
financial losses, or the spread of harm-
ful content, underlining the urgency
of addressing this issue. For example,
the attackers execute model-poisoning
attacks to manipulate AI models in
cybersecurity systems, leading to mis-
classifying malicious code and result-

inginundetected or unnoticed threats.
For instance, by poisoning the training
data fed to an Al-based malware detec-
tion system, attackers can cause the
model to misclassify malicious code as
benign software. An example was dem-
onstrated in a study® where research-
ers manipulated an Al-based classifier
to mis-identify malware samples as
harmless files, exploiting the model’s
trust in manipulated data.

AI model allowing data exfiltration
through model outputs. A user loads a
sentiment analysis model from an un-
trusted source. The model has been
trained or designed to subtly encode
sensitive information from the train-
ing data (for example, user data) into
its outputs. For instance, the output
might include subtle variations in
probability scores that, when com-
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bined, can reveal private information.
An attacker could query the model re-
peatedly to extract this sensitive data
using data exfiltration tactics, leading
to a data breach. Considering real-
world scenarios, attackers can use
model inversion attacks® to exfiltrate
sensitive data from AI models trained
using large datasets containing con-
fidential information. These attacks
allow adversaries to reconstruct the
data by analyzing the model’s out-
puts. Researchers have demonstrated
attacks on AI models that used per-
sonal data,?® where researchers could
reverse-engineer sensitive information
from the model’s outputs.

AI model with back-door functional-
ity. Auser deploys an Al model to classi-
fyimages or texts, assuming it is a stan-
dard classification model. The model
usually behaves under most conditions.
However, it contains a back door—a
specific input pattern (for example, a
particular word sequence in text or a
small overlay in images) that triggers
malicious behavior, such as always out-
putting a particular class or executing
unintended code. The attackers could
exploit this back-door functionality to
manipulate the model’s behavior, po-
tentially causing the system to misclas-
sify inputs or execute harmful actions.
This underscores the potential for sig-
nificant harm from such malicious AI
models. In the real world, malicious
AI models" circumvent software secu-
rity. Researchers have demonstrated
that attackers could bypass deployed
security protocols by exploiting a hid-
den back door embedded in model
artifacts. In addition, attackers can
activate the embedded back door to
execute malicious behavior by trigger-
ing crafted inputs™ passed to malicious
AI models. For example, a back door
embedded into an Al-based authenti-
cation system could be triggered by a
specific user-input pattern to grant un-
authorized access, bypassing standard
authentication checks.

The types of malicious AI models
presented above underscore the im-
portance of sourcing AI models from
trusted providers, thoroughly validat-
ing and testing them before deploy-
ment, and continuously monitoring
their behavior in production environ-
ments. This ongoing vigilance is cru-
cial to mitigate these risks, as threats



can evolve over time. However, this
article focuses mainly on pre-trained
Al models with malicious code embed-
ded in them.

Threat classification. First, we must
understand the threat classification
associated with malicious AI models
hosted on the AI development plat-
form. Threat classification enables
an understanding of the mode of op-
eration and the impact of malicious
AI models. The goal is to dissect the
significant threats malicious AI mod-
els pose to supply-chain operations’ in-
tegrity, security, and efficiency. Table 2
highlights the details.

Malicious AI models erode trust in
the software supply chain, leading to
uncertainty and reduced confidence
in software components or vendors.
Next, we present several examples that
highlight the threats posed by mali-
cious AI models if not vetted securely:

» A malicious AI model can disrupt
code build and pipeline operations.
Once loaded in a CI/CD environment,
the Al model containing the malicious
payload could silently alter environ-
ment variables, dependencies, and
pipeline configuration, introducing
errors into the build process and re-
sulting in failed builds. It could also
change the version of a critical library
to an insecure one, causing the appli-
cation to malfunction or exposing it to
known vulnerabilities.

» A malicious AI model can subvert
software integrity by executing ac-
tions that alter the software’s intended
functionality or security. For example,
when the malicious AI model is inte-
grated into a software application, the
hidden payload (script) subtly alters
the critical algorithms to skew results
or weaken encryption methods, thus
compromising the software’s reliabil-
ity and security. In addition, the pay-
load can tamper with the software’s
update mechanism, allowing the at-
tacker to inject further malicious up-
dates or prevent legitimate updates
from being applied, leaving the soft-
ware vulnerable to exploitation.

» A malicious AI model, housing an
attack payload, can execute data theft
by embedding code that triggers un-
der specific conditions to perform data
exfiltration from the system where the
model is deployed. The payload dis-
creetly scans the text data for sensitive

information, such as email addresses,
credit card numbers, or personally
identifiable information (PII). Upon
identifying sensitive data, the payload
encodes and sends the collected data
to an external command and control
(C&C) server. The payload could use a
covert HTTP channel, DNS tunneling,
or other data-exfiltration tactics. Since
the payloads are integrated into an
AT model and the exfiltration is done
stealthily, the data theft can go unno-
ticed for an extended period.
Organizations compromised by
malicious AI models can suffer repu-
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tational harm, leading to loss of trust
and credibility. In addition, organiza-
tions affected by malicious AI models
may inadvertently violate data pro-
tection regulations and compliance
standards. Understanding the threat
classification helps develop targeted
defenses and enhance the overall resil-
ience of cybersecurity controls against
sophisticated malicious Al models.
Unearthing the attack payloads. At-
tack payloads refer to malicious data or
instructions delivered to a target sys-
tem for gaining unauthorized access
and modifying critical files present in

Table 3. Potential attack payloads served by malicious Al models.

Payload Type Description

Reverse shell

A reverse shell is a network connection method attackers use to gain remote ac-

cess to a target system. Reverse shell allows attackers to bypass firewalls and
security measures that block incoming connections, as many networks allow
outbound connections by default. On successful connection, the attacker can
execute commands on the victim's machine.

Software object
hooking

Software object hooking®® involves intercepting and manipulating the normal
execution flow within a software application by attaching malicious code to

software objects or functions. For example, malicious code can hook into system
APIs or application functions to capture sensitive data, such as passwords,
keystrokes, or network traffic; alter the functionality of legitimate software; or
bypass security mechanisms. Hooking enables persistent and stealthy control
over the compromised system.

Unauthorized file
read/write

Unauthorized file read/write is the ability of the malicious payload to access,
modify, delete, or create files on a compromised system without the user’s

permission. The attacker can alter system files or application data to disrupt
operations, cause data corruption, or implant additional malicious code,
facilitating further system exploitation.

Beacon and pingback

Beacon®® and pingback are techniques to maintain communication with an

attacker's command and control (C&C) server. A beacon is a signal sent out
by the infected system at regular intervals to inform the C&C server that it is
still active and awaiting further instructions. Pingback is a response from the
malware to a query or command from the C&C server, confirming receipt and
execution of instructions. These communication methods allow attackers to
manage running malicious code.

Arbitrary code
execution

Arbitrary code execution® refers to exploiting vulnerabilities in an application,
operating system, or network to execute unauthorized code. The attacker

can execute the selected commands, which often leads to data theft, system
corruption, or the installation of additional malicious code.

Data deserialization

The attack payload exploits the deserialization'® process of data structures

within applications to serialize data back into its original object form.
The attacker embeds malicious code as the deserialized object from the
compromised system to gain unauthorized access, escalate privileges, and

compromise system integrity.

Back door The attack payload deploys covert methods that bypass normal authentication,
impersonate users, and circumvent security controls within software, allowing
unauthorized access to the system. Back door can trigger harmful behaviors
under predefined conditions, posing significant security risks.

Downloader The attack payload downloads and installs additional harmful malicious

code onto a compromised system. It typically operates by stealth, retrieving
further malicious payloads from remote servers, which can include spyware,
ransomware, or other types of malware, thereby amplifying the impact of the

initial infection.

Malicious system
updates

Malicious system updates!® involve attackers distributing fake or altered updates
that modify system configurations and install additional payloads. These

updates appear legitimate, often mimicking official software updates, making

detection difficult.
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the operating system, including appli-
cations. These payloads can take vari-
ous forms, depending on the specific
attack vector and the attacker’s objec-
tives. Here, we focus solely on loading
and executing various attack payloads
when malicious AI models are im-
ported from the Al infrastructure plat-
forms to the developers’ environment.
First, we focus on the potential attack
payloads that malicious AI model serv-
ers execute on the underlying machine
where the AI models are deployed, as
Table 3 shows.

Several real-world and advanced
cyberattacks have used the payloads
listed in Table 3 in different capacities.
The SolarWinds supply-chain attack*
used payloads such as back doors,
beacons, and others to execute com-
mands, perform data exfiltration, and
communicate with the C&C server. The
Operation ShadowHammer® supply-
chain attacks are another example, in
which attackers compromised ASUS
Live Update Utility, embedding mal-
ware in the software update, which
was then distributed to approximately
half a million ASUS users, targeting
specific MAC addresses. Consider the
Kingslayer attack,” in which attackers
embedded malicious code into a third-
party software used by a global IT ser-
vices firm; the code was distributed
through the IT firm’s updates, grant-
ing attackers privileged access to client
systems. All these real-world attacks
highlight the gravity of the problem of
securing software supply chains.

Embedding malicious payloads in
Al'modelsis avery effective strategy be-
cause AI models are often shared and
reused without thorough inspection.
It allows attackers to gain unauthor-
ized and complete control over systems
that load these models. We discuss sev-
eral examples. First, an attacker could
inject a reverse shell payload in the
model. When users download and load
this model into their environment, the
payload could be triggered, opening a
connection back to the attacker’s serv-
er. With that, the attacker can execute
commands remotely on the victim’s
machine, potentially accessing sensi-
tive data, manipulating system files, or
spreading malware across the network.

Second, an attacker embeds a
direct-command execution payload
within the model. The payload ex-

Embedding
malicious payloads
in Almodels is

a very effective
strategy because
Al models are often
shared and reused
without thorough
inspection.
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ecutes system-level commands on the
host machine when model loading oc-
curs. For example, the payload could
be designed to execute a command
that downloads additional malware,
alters system configurations, or exfil-
trates data to an external server. Us-
ers must realize that the Al model they
have integrated into their system could
carry a hidden threat, and their role in
preventing potentially severe security
breaches is paramount. Understand-
ing the nature and characteristics of
these attack payloads is essential for
security practitioners to detect, pre-
vent, and mitigate security threats
within their organizations effectively.

Attack flow model. An attack flow
model decomposes and visualizes the
threat’s sequence® of actions. It is es-
sential because it provides a compre-
hensive understanding of the attack’s
structure and execution, enabling se-
curity teams to anticipate, detect, and
mitigate threats more effectively. At
this point, dissecting the attack flow
model is crucial, as it highlights how
malicious Al models serve the different
attack payloads. The figure describes
the malicious Al model execution host-
ed on the AI platform repository.

The attack flow model can be bro-
ken down into four steps:

» Step 1. The adversary creates a
malicious AI model by embedding
unauthorized code in the model file
and then hosting the AI model on the
repository hosted on the AI platform.
The adversary can select any AI model
type, such as text classification, named
entity recognition, machine transla-
tion, text generations, and others, to
mimic the behavior of an actual AI
model. The goal here is to design a ma-
licious AI model that is hard to detect
and follows a level of stealthiness. Af-
ter the malicious AI model has been
successfully hosted and the AI plat-
form’s inherent scanning feature fails
to detect it, the AI model is potentially
ready to be consumed by users.

» Step 2. The user imports the mali-
cious AI model and trusts it because it
is hosted on the AI platform without
risks. In the figure, it is worth noting
two code identifiers, c1 and c¢2, which
can be extended with real-world code.

a. cI pseudocode: Shows that the pre-
trained malicious AI model is loaded
into the pipeline.



Figure. Attack flow highlighting malicious Al models execution.
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AT model (pytorch,
tensorflow) type: text classification,
named entity recognition,
machine translation, and text generation

{from model_base_library import pipeline
Gill p_handle = pipeline("model_type",
model = “malicious_ai_model")}

(a

I community
platform

Ly [

Pre-trained AL models repository

-

Step 1:
Adversary
creates and
uploads

the malicious

A

c2
{from model_base_library import AuthT,

AutoModelforCasualLM
t_handle = AuthT.from_pretrained("mal_ai_model")
m_handle = AutoModelforCasuallLM.from_pretrained("mal_ai_model")}

Step 2:
User imports

J

the malicious
AI model from
the repository

/

Step 4:

Compromised system
connects to the C&C infrastructure
to perform unauthorized operations

model file:
deserialization and
decode byte classes

Step 3: User calls the load function
and executes the model file
containing payload (serialized data)

Embedded payload
execution leads to

A2

AI model ]

(mal_ai_model)
to the repository

b. c2 pseudocode: Highlights that the
pre-trained malicious AI model is im-
ported directly using the authorization
token for use.

» Step 3. Once the user deploys the
AI model by calling the load func-
tion, the data (command instructions)
stored in the model file as serialized
data is deserialized, and the system
executes the unauthorized payload. At
this point, the user’s system is compro-
mised because the AI model drops the
attack payload, successfully subverting
the system’s integrity.

» Step 4. The compromised systems
connect to the adversary-controlled
C&C infrastructure and start nefari-
ous operations. These include exfil-
trating sensitive data such as cre-
dentials, financial information, or
intellectual property, and transmit-
ting it back to the attacker. The mal-
ware may also receive commands to
execute arbitrary code, leading to
further system compromise, or lat-
eral movement within a network. It
can also be used to disable security
defenses, encrypt data for ransom
(ransomware attacks), or even lever-
age compromised systems for launch-
ing broader attacks, thereby causing
widespread disruption and damage.

Malicious operations: command
and control (C&C), data exfiltration

system compromise

Table 4. Limitations of SCA and SBOM in detecting malicious Al models.

SCA and SBOM
Limitations

Description

Focus on traditional
software components

Designed to analyze traditional software components such as libraries, depen-
dencies, and packages and do not adequately address the complexities and
nuances of AT models involving extensive datasets, intricate algorithms, and
unique training processes.

Lack of behavioral
analysis and anomaly
detection

Focus on the static aspects of software, such as versions, licenses, and known
vulnerabilities, whereas AT models require dynamic analysis to understand
their behavior, biases, and potential for malicious actions.

No visibility into
training data and
process

Do not include information about the datasets used for training AI models, so
they fail to detect the compromised or biased training data that can lead to the
malicious use of AT models.

No support for model
interpretability and
explainability

Do not offer tools to understand the internal logic and the decision-making
processes within AL models, which is essential to detect and mitigate malicious
behavior of AT models.

Lack of integration
with AI-specific
security measures

Lack integration with AI-specific security frameworks and practices, such as
adversarial testing, model validation, and continuous monitoring for anomalous
behavior to assess the integrity and security of both the AT models and their
operational environments.

Evolving AT threat
landscape

Support the detection of threats and vulnerabilities listed in public databases,
such as common vulnerability exposures (CVEs).>* As AI-specific novel attacks
and vulnerabilities emerge, they require continuous and adaptive security
measures.

Security Defenses:

Limitations of SCA and SBOM
Several security solutions, includ-
ing Software Component Analysis
(SCA)** and Software Bill of Materi-
als (SBOM),” have been introduced
to handle the risks imposed on open
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source libraries and packages con-
taining unauthorized code. SCA is de-
ployed within DevSecOps pipelines to
perform component analysis of open
source libraries and packages at a
granular level to check for security is-
sues in an automated manner. SBOM
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Table 5. Approaches to strengthen software supply-chain security.

Category Details

Technical measures

» Use secure and robust formats to store and load model weights compared to traditional formats. Secure model formats, such as

Hugging Face's safetensors,?® TensorFlow SavedModel, MLflow, and Model Zoo formats (TFHub, Py Torch Hub) help address concerns
related to model security by preventing arbitrary code execution during deserialization, which is a risk with other formats that use

Python pickling.

» Use specialized tools to analyze AL models for anomalies, back doors, and hidden layers. A tool like CertifAI® performs comprehensive
security assessments to help identify unusual behaviors or structures within the model. The tool helps evaluate and ensure AT models’
fairness, robustness, and explainability.

» Implement rigorous validation processes using robust AT model validation' strategies to detect and prevent the deployment of mali-
cious AI models. Employ security assessment and testing tools such as adversarial-robustness-toolbox®* and Microsoft's Counterfit
tool? to simulate attacks, test robustness, and ensure that AT systems are resilient against adversarial threats.

» Use automated content-filtering* tools in the codebase to scan and filter out harmful content generated by AI models. Use decompilers,
static analyzers, and bytecode rewriters to extract payloads for analysis.

» Employ anomaly-detection?* techniques to uncover behavior patterns that indicate malicious activity by the AT models.
» Implement integrity checks to verify the model was not tampered with during download or transfer.

Organizational

» Implement a user-verification process to check the user’s identity to help deter threat actors from uploading harmful models.

measures » Develop a reputation system that rewards users who contribute securely to AI development.
» Design easy-to-report strategies to encourage the public community to report suspicious models or activities.
» Offer incentives, such as bug bounties'? or recognition within the community, to users who identify and report vulnerabilities or malicious
models.
Policy and » Develop documentation for all hosted AT models, including their intended use, training data, and risks or limitations.
governance » Publish regular transparency reports highlighting details on preventing malicious activity and control enforcement.

» Ensure platform policies follow relevant regulations and legal requirements concerning data protection and AI ethics.

» Include clauses in user agreements that hold users accountable for the misuse of their AL models.

Education and
awareness

> Educate users about the risks of malicious AI° and best practices for secure model development and deployment.
» Train users on ethical considerations in AI development, emphasizing the importance of creating robust AI models.

» Communicate the AI platform’s policies to prevent the hosting of malicious AI models.
» Keep users informed about new security measures, policy changes, and any incidents identified related to malicious AI.

Information sharing
models.

> Work with other AI platforms and industry groups®! to share information about emerging AI threats and best practices for hosting AI

» Establish relationships with law enforcement? and regulatory bodies to facilitate AI threat investigation and reporting.

provides a detailed representation of
components, libraries, and dependen-
cies used to create a software applica-
tion, providing transparency about
the composition of the software. SCA
in conjunction with SBOM are used
as hybrid solutions to reduce the risk
posed by malicious open source li-
braries and packages. However, SBOM
is still in its early stages and has not
been widely adopted. In addition, SCA
and SBOM have inherent limitations
to detecting malicious AI models be-
cause these models are custom gener-
ated, not designed on traditional soft-
ware design. Table 4 discusses several
limitations of SCA and SBOM.

We believe that the SCA and SBOM
solutions are valuable for traditional
software security but fall short in ad-
dressing the unique challenges posed
by malicious AI models. Ensuring the
security of AI systems requires spe-
cialized techniques and tools tailored
to the complexities of AI, including
dynamic behavioral analysis, robust
training data validation, and ongo-

ing monitoring to detect and mitigate
malicious activities.

Solutions and Recommendations

Circumventing the impact of mali-
cious AI models requires a shared
responsibility model of ensuring the
sanctity of AI models is validated be-
fore the actual use. Platforms hosting
Al models must provide inherent secu-
rity features, such as malicious code
scanning, vulnerability detection, and
risk identification of a hosted AI model
in an automated manner to ensure
only secure AI models are served. On
the same note, developers (consum-
ers) should also perform additional
security checks on their end to verify
that the imported AI model from the
hosting platform is secure and can be
consumed in the development envi-
ronment. Considering software sup-
ply-chain security, the onus is on both
the hosting providers and consumers
to reduce risks imposed by malicious
AI models. Table 5 discusses several
solutions and recommendations that
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can be employed in a hybrid way to
mitigate the impact of malicious AI
models hosted on AI infrastructure
platforms.

By implementing these compre-
hensive measures, organizations can
significantly reduce the risk of host-
ing malicious AI models, protect their
software supply chains, and maintain
the integrity of their services.

Future Challenges

Going forward, we must address sev-
eral challenges associated with the se-
curity of malicious AI models. Design-
ing AI-SBOM to maintain the security
of the AI software supply chain will be
challenging for several reasons. First,
Al systems rely on a complex web of de-
pendencies, including numerous open
source libraries, proprietary software,
and pre-trained models, making it dif-
ficult to track all components accurate-
ly. Second, AI models and algorithms
are frequently updated, retrained, and
fine-tuned, resulting in continuous
enhancements of components that



must be consistently documented in
the SBOM. Third, Al applications often
combine proprietary code with open
source software, complicating the
tracking of licensing, versioning, and
vulnerabilities across both domains.
Fourth, unlike traditional software,
Al systems include unique elements
such as training datasets, model archi-
tectures, and hyperparameters, which
are not typically covered by standard
SBOM practices.

Moreover, we strongly advocate that
AI model hosting platforms must ur-
gently design robust inherent security
mechanisms to verify the integrity of
AI models and detect model tamper-
ing, including hijacking using mali-
cious versions. There is an immediate
need to create secure data-training
protocols and monitoring for data-
training processes to increase the ro-
bustness and resiliency of the training
pipeline of AI models against the em-
bedding of back doors or biases dur-
ing training, which ultimately impacts
the sanctity of AI models. The trust-
worthiness of AI models necessitates
securing the entire training process.
Organizations must also expedite the
development of tools and frameworks
that provide greater transparency and
explainability, making auditing and
understanding AI model behavior easi-
er. Controlling access to Al models and
their underlying data is paramount to
prevent unauthorized usage and po-
tential leakage of sensitive informa-
tion, including data exfiltration. Or-
ganizations should develop advanced
and sophisticated access-control
mechanisms that dynamically man-
age permissions based on user roles
and contexts. Finally, we strongly rec-
ommend establishing standardized
security practices and strict adherence
to defined guidelines and regulations
to create a unified and consistent se-
curity framework for AI models. This
is not just a recommendation but a ne-
cessity in the face of evolving Al secu-
rity threats.

Conclusion

In this research, we have presented a
significant challenge of malicious Al
models being consumed in software
supply chains. Integrating malicious
AI models without verification leads
to unauthorized operations in the

user’s environment. The threat model
we have presented clarifies the risks
of malicious AI models and examines
the workflow of the attack’s execu-
tion. We need a multifaceted approach
to combat the threat of malicious Al
models in the software supply chain.
Organizations must implement robust
verification processes for third-party
components, including thorough code
reviews and static/dynamic analysis
to detect anomalies. As AI technolo-
gies become more pervasive, we must
develop and deploy Al-based defensive
and resilient mechanisms that can
identify and neutralize malicious Al
activities. More collaborative efforts
across the industry to share threat in-
telligence and best practices are also
crucial in addressing this evolving
threat landscape.
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