
the primary methods of introducing 
malicious AI models into the software 
supply chain. Developers often rely on 
libraries and frameworks to import 
pre-trained AI models to expedite soft-
ware development. Attackers can easily 
compromise the underlying system if 
the application consumes pre-trained 
AI models tainted with malicious code. 
For instance, the MLOps platform20 
fails to detect malicious AI models af-
ter scanning the model file containing 
serialized data. Deploying a malicious 
AI model would jeopardize the security 
of the systems and could put end users 
at risk in some applications.

The sophistication of these mali-
cious AI models allows them to adapt 
and evade traditional security mea-
sures by leveraging their ability to ana-
lyze vast amounts of data, learn com-
plex patterns, and generate responses 
that mimic human behavior. These 
malicious AI models can simulate di-
verse attack scenarios, discover previ-
ously unknown vulnerabilities, and 
create evasive techniques that tradi-
tional defenses, reliant on predefined 
signatures and heuristics, struggle to 
detect. It is also important to note that 
adversaries can exploit vulnerabilities 
in the AI framework or the environ-

I N T EGR AT I NG M A L ICIOUS A I  models6 into software 
supply chains presents a significant and emerging 
threat to cybersecurity. The attackers aim to embed 
malicious AI models in software components and 
widely used tools, thereby infiltrating systems at a 
foundational level. Once integrated, the malicious AI 
models execute embedded unauthorized code, which 
performs actions such as exfiltrating sensitive data, 
manipulating data integrity, or enabling unauthorized 
access to critical systems. Compromised development 
tools, tampered libraries, and pre-trained models are 
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 key insights

	˽ Attackers inject malicious code into AI 
models hosted on the public repositories. 
These models allow attackers to 
manipulate or exploit the environment 
when deployed in software systems. 
Incorporating malicious AI models 
in dependencies or libraries also 
compromises the integrity of software 
products downstream.

	˽ Malicious AI models are distributed 
to compromise the software supply 
chain and trigger infections on a large 
scale. The absence of rigorous testing 
or verification processes for AI models 
allows adversaries to inject malicious 
functionality into them.

	˽ Organizations need robust processes 
to validate the origin and integrity of AI 
models. Organizations should use trusted 
repositories, cryptographic validation, 
and controlled access to mitigate risks 
associated with third-party AI models.

https://dx.doi.org/10.1145/3704724
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ment when the AI model is deployed, 
such as weaknesses in deserialization 
processes or insufficient validation 
checks. This underscores the need for 
constant vigilance and proactive mea-
sures to secure AI systems. Integration 
of AI models without adequate security 
checks can lead to the execution of un-
authorized code. AI models, especially 
those shared via untrusted sources, 
may contain embedded malicious 
code or payloads that can be triggered 
during execution. Attackers can tam-
per with the model weights, scripts, 
or dependencies to insert hidden mal-
ware or back doors, allowing for unau-
thorized code execution once the mod-
el is loaded into memory. The absence 
of robust security checks, sandboxing, 
or code-integrity verification can lead 
to arbitrary code execution, underscor-
ing the critical need for stringent secu-
rity measures.

Detecting and mitigating malicious 
AI models is challenging due to their 
complexity and opacity. First, AI mod-
els are distributed as opaque files (for 
example, model weights) containing 
parameters learned during training. 
As these parameters can be tampered 
with, AI models act maliciously when 
specific triggers are activated, making 
it challenging to distinguish between a 
benign and compromised model with-
out deep analysis. Second, AI models 
rely on external dependencies and 
frameworks, and attackers can exploit 
vulnerabilities in these libraries to in-
troduce malicious payloads. Third, AI 
models are deployed in environments 
that lack proper validation or isolation 
mechanisms, allowing malicious code 
hidden within a model to execute un-
detected. Several existing solutions 
aim to address these issues, such as 
secure model validation to check the 
integrity of models before they are de-
ployed. Another key solution is to use 
a secure model serialization format, 
such as Safetensors,16 for AI models. 
This format provides a robust way to 
verify the embedded code, offering a 
sense of reassurance about the safety 
of the AI models. In addition, model 
watermarking involves embedding 
models with unique identifiers to ver-
ify their source and integrity. Sandbox-
ing models in isolated execution envi-
ronments is another technique that 
mitigates the risk of malicious code 

execution by containing any harmful 
behavior within a controlled space. 
Despite these solutions, the constantly 
evolving nature of AI-based threats 
makes it essential for organizations to 
continuously adapt and integrate mul-
tiple layers of security by building a 
holistic approach to security to defend 
against malicious AI models. Overall, 
malicious AI models are programmed 
to recognize and adapt to differ-
ent security environments. They can 
identify patterns in security protocols 
and learn to avoid detection by mim-
icking normal system behavior. This 
adaptability makes them particularly 
dangerous because they can remain 
dormant and undetected for extended 
periods, only activating under specific 
conditions to execute their malicious 
payload. This stealthy nature of at-
tacks using AI complicates incident re-
sponse efforts because traditional de-
tection methods may not be effective 
against such advanced cyber threats.

Research contributions of this 
work. Considering the above, this ar-
ticle makes the following contribu-
tions. First, we describe the AI model 
integration process and discuss threat 
classification and associated attack 
payloads. Second, we present a com-
plete attack flow model explaining 
how attackers use malicious AI mod-
els to compromise the target systems. 
Third, we discuss the limitation of tra-
ditional security defenses to restrict 
the impact of malicious AI models. 
Fourth, we discuss recommendations 
with granularity, which organizations 
can opt to strengthen software supply-
chain security.

Understanding the AI Model 
Integration Process
Hosting AI models in a repository is a 
crucial aspect of modern AI develop-
ment and deployment.17 The reposito-
ries hosting AI models are centralized 
locations where models, metadata, 
dependencies, and documentation 
are stored securely, facilitating easy 
access and collaboration. The AI mod-
els deployed in the repositories are 
often open source, allowing users to 
directly deploy them in the produc-
tion environment or fine-tune those AI 
models for specific use cases. By host-
ing AI models in a repository, organi-
zations can ensure consistency across 

different stages of development, from 
training to maintenance control over 
model versions and updates. Reposito-
ries such as Hugging Face, TensorFlow 
Hub, PyTorch Hub, and Model Zoo of-
fer additional features over traditional 
model-hosting and version-control 
systems such as GitHub. These fea-
tures include model discovery; built-in 
tools for model evaluation, including 
model training, integrated inference 
application programming interfaces 
(APIs), private model hosting, sharing 
pre-trained models; and integration 
with various machine learning (ML) 
frameworks.

The AI model integration process 
involves transferring a pre-trained 
model from an external source or re-
pository into a local development envi-
ronment or application for further use 
or fine-tuning. This process typically 
starts by selecting the appropriate 
model from a repository, which pro-
vides models in various formats. Once 
selected, the model is downloaded and 
loaded into the chosen ML framework, 
such as TensorFlow or PyTorch, using 
standardized functions or APIs. Dur-
ing integration, it is crucial to ensure 
that the model’s architecture, depen-
dencies, and input-output configura-
tions are compatible with the existing 
environment. The model may undergo 
additional steps, such as fine-tuning 
domain-specific data, integration 
into a larger system, or deployment 
in a production environment. Under-
standing the complete AI model inte-
gration process is essential to dissect 
the associated risks and threats. Table 
1 presents the workflow of integrating 
the AI model.

By following the steps in Table 1, us-
ers can effectively import pre-trained 
AI models from repositories for devel-
opment.

Threat Modeling: 
Malicious AI Models
Threat modeling10 offers a structured 
framework for understanding threats. 
The primary importance of threat 
modeling lies in its proactive nature, 
allowing organizations to anticipate 
and mitigate risks before malicious 
actors can exploit them. The goal is 
to develop a systematic approach for 
identifying, assessing, and addressing 
potential security threats to applica-
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tions, systems, or networks. This sec-
tion discusses malicious AI models, 
threat classification, attack payloads, 
and attack flow models specifically for 
malicious AI models impacting soft-
ware supply chains.

Understanding malicious AI mod-
els. A malicious AI model is designed 
or tampered with to cause harm or 
act against the intended purpose of 
the system it’s integrated into. While 
many might assume that an AI model 
is simply a tool for prediction or classi-
fication, like predicting sentiment in a 
text, malicious actors can exploit these 
models in various ways to compromise 
security, privacy, and integrity. Several 
examples of malicious AI models are 
listed below.

Embedding malicious code in model 
artifacts. To speed up development, a 
user downloads a pre-trained model 
from an online repository. The mod-
el file is embedded with malicious 
code that executes when the model is 
loaded, taking advantage of the load-
ing process to infect the system. This 
could compromise the system, giving 
attackers control over the host ma-
chine, enabling data exfiltration, or 
spreading the malware further. In re-
al-world scenarios, Python pickle files 
have been used to embed malicious 
code within AI models, exploiting the 
deserialization process in Python. 
Pickle is a Python-specific serializa-
tion format for AI models. Still, the 
inherent security flaw for trusting the 
deserialized data allows the execution 
of embedded code, creating a serious 
security risk. Researchers demonstrat-
ed how a malicious pickle file could 
execute arbitrary code during deseri-
alization using the sleepy pickle attack 
technique.22,23 Listing 1 highlights the 
basic code of a pickle file embedded 
with malicious code.

In the code presented in the listing, 
the pickle.loads() function is called, 
and the embedded malicious com-
mand (os.system ("rm -rf /")) is executed, 
causing catastrophic damage, such as 
deleting files on the system. When an 
AI model is executed using the mali-
cious pickle file, the embedded code 
runs in that environment without the 
user’s knowledge. In other more prom-
inent attack scenarios, attackers can 
distribute pre-trained AI models and 
users might unknowingly download 

Table 1.  Basic workflow for integrating an AI model from the repository.

Integration Steps Description

Choose repository Select a repository or platform where the desired pre-trained model is hosted. 
Standard repositories include:

	˲ �GitHub: A platform for hosting open source projects, including AI models.
	˲ �Hugging Face Model Hub: A repository for hosting and sharing pre-trained 
natural language processing models.

	˲ �TensorFlow Hub: A platform for sharing AI models compatible with the Tensor-
Flow framework.

	˲ �PyTorch Hub: A repository for sharing AI models compatible with the PyTorch 
framework.

Identify model Select the specific model to import from the repository. Hosted models are 
organized by task, architecture, or domain.

Install required 
packages

Install the necessary libraries or packages to interact with the repository 
and download the model. The list below includes widely used packages or 
dependencies.

	˲ �Hugging Face Model Hub: Install the transformers library using pip (pip install 
transformers).

	˲ �TensorFlow Hub: Install TensorFlow and TensorFlow Hub (pip install tensorflow 
tensorflow-hub).

	˲ �PyTorch Hub: Install PyTorch (pip install torch).

Import model Import the desired model into one’s Python environment using the appropriate 
library or framework.

	˲ �Hugging Face Model Hub (using transformers library): 
from transformers import AutoModelForSequenceClassification 
model = AutoModelForSequenceClassification.from_pretrained 
  (“distilbert-base-uncased”)

	˲ �Tensor Hub: 
import tensorflow_hub as hub 
model = hub.load(“https://tinyurl.com/22ts9aop”)

	˲ �PyTorch Hub: 
import torch 
model = torch.hub.load(‘pytorch/vision’, ‘resnet18’, pretrained=True)

Verify compatibility 	˲ �Verify that the model’s input and output formats match the data pipeline. If 
necessary, adjust preprocessing steps to ensure compatibility.

	˲ �Ensure that the local framework and hardware (for example, CPU vs. GPU) sup-
port the model’s layers, activation functions, and other components.

Customize and  
fine-tune

	˲ �Adapt the model to a specific dataset using fine-tuning by continuing training on 
the data. Modify hyperparameters such as learning rate, batch size, or optimizer 
to better suit the training dataset or objectives.

Test and optimize 	˲ �Run tests to ensure the model behaves as expected in the local environment. 
These tests include validating the model’s accuracy, performance, and response 
to operational parameters—including rare and unexpected inputs.

	˲ �Optimize the model for faster inference, lower memory usage, or deployment 
on edge devices. Tools such as TensorFlow Lite, ONNX Runtime, or PyTorch’s 
TorchScript can help with optimization.

Save the model 	˲ �Once imported and possibly modified, save the model in a local directory with a 
transparent versioning scheme that enables tracking changes and reverting to 
previous versions if necessary.

Deploy the model 	˲ �If the model is intended for production, deploy it using appropriate tools and 
frameworks. This involves setting up inference pipelines and scaling strategies. 
Inference pipelines cover structured steps an AI model follows to process input 
data and generate predictions. Scaling strategies ensure the system handles the 
load by dynamically allocating resources for optimizing inference operations.

Listing 1. Example code highlighting malicious payload in a pickle object. 

import pickle
# This is a destructive command
malicious _ code = ‘import os; os.system(“rm -rf /”)’
malicious _ pickle = pickle.dumps(malicious _ code)

# Simulating deserialization (execute the malicious payload) 
pickle.loads(malicious _ pickle)
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bined, can reveal private information. 
An attacker could query the model re-
peatedly to extract this sensitive data 
using data exfiltration tactics, leading 
to a data breach. Considering real-
world scenarios, attackers can use 
model inversion attacks29 to exfiltrate 
sensitive data from AI models trained 
using large datasets containing con-
fidential information. These attacks 
allow adversaries to reconstruct the 
data by analyzing the model’s out-
puts. Researchers have demonstrated 
attacks on AI models that used per-
sonal data,28 where researchers could 
reverse-engineer sensitive information 
from the model’s outputs.

AI model with back-door functional-
ity. A user deploys an AI model to classi-
fy images or texts, assuming it is a stan-
dard classification model. The model 
usually behaves under most conditions. 
However, it contains a back door—a 
specific input pattern (for example, a 
particular word sequence in text or a 
small overlay in images) that triggers 
malicious behavior, such as always out-
putting a particular class or executing 
unintended code. The attackers could 
exploit this back-door functionality to 
manipulate the model’s behavior, po-
tentially causing the system to misclas-
sify inputs or execute harmful actions. 
This underscores the potential for sig-
nificant harm from such malicious AI 
models. In the real world, malicious 
AI models19 circumvent software secu-
rity. Researchers have demonstrated 
that attackers could bypass deployed 
security protocols by exploiting a hid-
den back door embedded in model 
artifacts. In addition, attackers can 
activate the embedded back door to 
execute malicious behavior by trigger-
ing crafted inputs14 passed to malicious 
AI models. For example, a back door 
embedded into an AI-based authenti-
cation system could be triggered by a 
specific user-input pattern to grant un-
authorized access, bypassing standard 
authentication checks.

The types of malicious AI models 
presented above underscore the im-
portance of sourcing AI models from 
trusted providers, thoroughly validat-
ing and testing them before deploy-
ment, and continuously monitoring 
their behavior in production environ-
ments. This ongoing vigilance is cru-
cial to mitigate these risks, as threats 

ing in undetected or unnoticed threats. 
For instance, by poisoning the training 
data fed to an AI-based malware detec-
tion system, attackers can cause the 
model to misclassify malicious code as 
benign software. An example was dem-
onstrated in a study5 where research-
ers manipulated an AI-based classifier 
to mis-identify malware samples as 
harmless files, exploiting the model’s 
trust in manipulated data.

AI model allowing data exfiltration 
through model outputs. A user loads a 
sentiment analysis model from an un-
trusted source. The model has been 
trained or designed to subtly encode 
sensitive information from the train-
ing data (for example, user data) into 
its outputs. For instance, the output 
might include subtle variations in 
probability scores that, when com-

compromised models serialized as 
pickle files.

AI model poisoning. A user deploys 
a pre-trained AI model updated peri-
odically with new data (for example, a 
recommendation system or fraud-de-
tection model). An attacker injects ma-
licious data into the training process 
by tampering with the data sources, 
causing the model to learn incorrect 
patterns. For instance, a model might 
recommend harmful content or fail to 
detect fraudulent transactions. This 
could result in reputational damage, 
financial losses, or the spread of harm-
ful content, underlining the urgency 
of addressing this issue. For example, 
the attackers execute model-poisoning 
attacks to manipulate AI models in 
cybersecurity systems, leading to mis-
classifying malicious code and result-

Table 2. Threat model—risks and impacts of malicious AI model.

Threat Category Techniques Description

Development 
environments as 
attack launchpads

Embedding malicious 
code

Insert back doors or vulnerabilities into software 
during the development process to gain unauthorized 
access to systems.

Trojanized packages Inject arbitrary code into packages and libraries to 
compromise the products.

Dependency hijacking Substitute legitimate dependencies with malicious 
versions to execute unauthorized operations.

Dependency chaining Exploit transitive or indirect dependencies to introduce 
malicious code into software systems.

Dependency confusion Exploiting naming conventions or dependency-
resolution mechanisms to substitute legitimate 
components with malicious alternatives.

Data theft Source code theft Extracting code constructs specific to repositories to 
discover security vulnerabilities.

Data exfiltration Exfiltrate sensitive information from development 
environments, such as API keys, credentials, and 
configuration files.

Disrupting code 
build and pipeline 
operations

Subverting software 
build operations

Sabotage software builds by injecting errors or 
modifying build scripts, causing delays and disruptions 
in the release cycle.

Circumventing 
deployment operations

Exploit vulnerabilities in continuous integration/
continuous delivery (CI/CD) pipelines to introduce 
malicious code or alter deployment processes,  
leading to compromise.

Subverting the 
integrity of software

Injecting unauthorized 
code

Injecting unauthorized code that alters the behavior 
of software products leads to data breaches, 
unauthorized data manipulation, or denial of service.

Data poisoning and 
corruption

Corrupting the training data used by AI/ML models 
can cause them to behave unpredictably or produce 
incorrect outputs.

Dynamic code loading Load and execute malicious code on compromised 
systems from remote servers.

Security controls 
evasion

Code obfuscation Apply obfuscation techniques to disguise payloads to 
bypass existing security defenses.

Polymorphic code Generate code variants using polymorphism to bypass 
detection mechanisms.
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tational harm, leading to loss of trust 
and credibility. In addition, organiza-
tions affected by malicious AI models 
may inadvertently violate data pro-
tection regulations and compliance 
standards. Understanding the threat 
classification helps develop targeted 
defenses and enhance the overall resil-
ience of cybersecurity controls against 
sophisticated malicious AI models.

Unearthing the attack payloads. At-
tack payloads refer to malicious data or 
instructions delivered to a target sys-
tem for gaining unauthorized access 
and modifying critical files present in 

information, such as email addresses, 
credit card numbers, or personally 
identifiable information (PII). Upon 
identifying sensitive data, the payload 
encodes and sends the collected data 
to an external command and control 
(C&C) server. The payload could use a 
covert HTTP channel, DNS tunneling, 
or other data-exfiltration tactics. Since 
the payloads are integrated into an 
AI model and the exfiltration is done 
stealthily, the data theft can go unno-
ticed for an extended period.

Organizations compromised by 
malicious AI models can suffer repu-

can evolve over time. However, this 
article focuses mainly on pre-trained 
AI models with malicious code embed-
ded in them.

Threat classification. First, we must 
understand the threat classification 
associated with malicious AI models 
hosted on the AI development plat-
form. Threat classification enables 
an understanding of the mode of op-
eration and the impact of malicious 
AI models. The goal is to dissect the 
significant threats malicious AI mod-
els pose to supply-chain operations’ in-
tegrity, security, and efficiency. Table 2 
highlights the details.

Malicious AI models erode trust in 
the software supply chain, leading to 
uncertainty and reduced confidence 
in software components or vendors. 
Next, we present several examples that 
highlight the threats posed by mali-
cious AI models if not vetted securely:

	˲ A malicious AI model can disrupt 
code build and pipeline operations. 
Once loaded in a CI/CD environment, 
the AI model containing the malicious 
payload could silently alter environ-
ment variables, dependencies, and 
pipeline configuration, introducing 
errors into the build process and re-
sulting in failed builds. It could also 
change the version of a critical library 
to an insecure one, causing the appli-
cation to malfunction or exposing it to 
known vulnerabilities.

	˲ A malicious AI model can subvert 
software integrity by executing ac-
tions that alter the software’s intended 
functionality or security. For example, 
when the malicious AI model is inte-
grated into a software application, the 
hidden payload (script) subtly alters 
the critical algorithms to skew results 
or weaken encryption methods, thus 
compromising the software’s reliabil-
ity and security. In addition, the pay-
load can tamper with the software’s 
update mechanism, allowing the at-
tacker to inject further malicious up-
dates or prevent legitimate updates 
from being applied, leaving the soft-
ware vulnerable to exploitation.

	˲ A malicious AI model, housing an 
attack payload, can execute data theft 
by embedding code that triggers un-
der specific conditions to perform data 
exfiltration from the system where the 
model is deployed. The payload dis-
creetly scans the text data for sensitive 

Table 3. Potential attack payloads served by malicious AI models.

Payload Type Description

Reverse shell A reverse shell is a network connection method attackers use to gain remote ac-
cess to a target system. Reverse shell allows attackers to bypass firewalls and 
security measures that block incoming connections, as many networks allow 
outbound connections by default. On successful connection, the attacker can 
execute commands on the victim’s machine.

Software object 
hooking

Software object hooking33 involves intercepting and manipulating the normal 
execution flow within a software application by attaching malicious code to 
software objects or functions. For example, malicious code can hook into system 
APIs or application functions to capture sensitive data, such as passwords, 
keystrokes, or network traffic; alter the functionality of legitimate software; or 
bypass security mechanisms. Hooking enables persistent and stealthy control 
over the compromised system.

Unauthorized file 
read/write

Unauthorized file read/write is the ability of the malicious payload to access, 
modify, delete, or create files on a compromised system without the user’s 
permission. The attacker can alter system files or application data to disrupt 
operations, cause data corruption, or implant additional malicious code, 
facilitating further system exploitation.

Beacon and pingback Beacon15 and pingback are techniques to maintain communication with an 
attacker’s command and control (C&C) server. A beacon is a signal sent out 
by the infected system at regular intervals to inform the C&C server that it is 
still active and awaiting further instructions. Pingback is a response from the 
malware to a query or command from the C&C server, confirming receipt and 
execution of instructions. These communication methods allow attackers to 
manage running malicious code.

Arbitrary code 
execution

Arbitrary code execution32 refers to exploiting vulnerabilities in an application, 
operating system, or network to execute unauthorized code. The attacker 
can execute the selected commands, which often leads to data theft, system 
corruption, or the installation of additional malicious code.

Data deserialization The attack payload exploits the deserialization13 process of data structures 
within applications to serialize data back into its original object form. 
The attacker embeds malicious code as the deserialized object from the 
compromised system to gain unauthorized access, escalate privileges, and 
compromise system integrity.

Back door The attack payload deploys covert methods that bypass normal authentication, 
impersonate users, and circumvent security controls within software, allowing 
unauthorized access to the system. Back door can trigger harmful behaviors 
under predefined conditions, posing significant security risks.

Downloader The attack payload downloads and installs additional harmful malicious 
code onto a compromised system. It typically operates by stealth, retrieving 
further malicious payloads from remote servers, which can include spyware, 
ransomware, or other types of malware, thereby amplifying the impact of the 
initial infection.

Malicious system 
updates

Malicious system updates18 involve attackers distributing fake or altered updates 
that modify system configurations and install additional payloads. These 
updates appear legitimate, often mimicking official software updates, making 
detection difficult.
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ecutes system-level commands on the 
host machine when model loading oc-
curs. For example, the payload could 
be designed to execute a command 
that downloads additional malware, 
alters system configurations, or exfil-
trates data to an external server. Us-
ers must realize that the AI model they 
have integrated into their system could 
carry a hidden threat, and their role in 
preventing potentially severe security 
breaches is paramount. Understand-
ing the nature and characteristics of 
these attack payloads is essential for 
security practitioners to detect, pre-
vent, and mitigate security threats 
within their organizations effectively.

Attack flow model. An attack flow 
model decomposes and visualizes the 
threat’s sequence3 of actions. It is es-
sential because it provides a compre-
hensive understanding of the attack’s 
structure and execution, enabling se-
curity teams to anticipate, detect, and 
mitigate threats more effectively. At 
this point, dissecting the attack flow 
model is crucial, as it highlights how 
malicious AI models serve the different 
attack payloads. The figure describes 
the malicious AI model execution host-
ed on the AI platform repository.

The attack flow model can be bro-
ken down into four steps:

	˲ Step 1. The adversary creates a 
malicious AI model by embedding 
unauthorized code in the model file 
and then hosting the AI model on the 
repository hosted on the AI platform. 
The adversary can select any AI model 
type, such as text classification, named 
entity recognition, machine transla-
tion, text generations, and others, to 
mimic the behavior of an actual AI 
model. The goal here is to design a ma-
licious AI model that is hard to detect 
and follows a level of stealthiness. Af-
ter the malicious AI model has been 
successfully hosted and the AI plat-
form’s inherent scanning feature fails 
to detect it, the AI model is potentially 
ready to be consumed by users.

	˲ Step 2. The user imports the mali-
cious AI model and trusts it because it 
is hosted on the AI platform without 
risks. In the figure, it is worth noting 
two code identifiers, c1 and c2, which 
can be extended with real-world code.

a.	 c1 pseudocode: Shows that the pre-
trained malicious AI model is loaded 
into the pipeline.

the operating system, including appli-
cations. These payloads can take vari-
ous forms, depending on the specific 
attack vector and the attacker’s objec-
tives. Here, we focus solely on loading 
and executing various attack payloads 
when malicious AI models are im-
ported from the AI infrastructure plat-
forms to the developers’ environment. 
First, we focus on the potential attack 
payloads that malicious AI model serv-
ers execute on the underlying machine 
where the AI models are deployed, as 
Table 3 shows.

Several real-world and advanced 
cyberattacks have used the payloads 
listed in Table 3 in different capacities. 
The SolarWinds supply-chain attack1 
used payloads such as back doors, 
beacons, and others to execute com-
mands, perform data exfiltration, and 
communicate with the C&C server. The 
Operation ShadowHammer25 supply-
chain attacks are another example, in 
which attackers compromised ASUS 
Live Update Utility, embedding mal-
ware in the software update, which 
was then distributed to approximately 
half a million ASUS users, targeting 
specific MAC addresses. Consider the 
Kingslayer attack,7 in which attackers 
embedded malicious code into a third-
party software used by a global IT ser-
vices firm; the code was distributed 
through the IT firm’s updates, grant-
ing attackers privileged access to client 
systems. All these real-world attacks 
highlight the gravity of the problem of 
securing software supply chains.

Embedding malicious payloads in 
AI models is a very effective strategy be-
cause AI models are often shared and 
reused without thorough inspection. 
It allows attackers to gain unauthor-
ized and complete control over systems 
that load these models. We discuss sev-
eral examples. First, an attacker could 
inject a reverse shell payload in the 
model. When users download and load 
this model into their environment, the 
payload could be triggered, opening a 
connection back to the attacker’s serv-
er. With that, the attacker can execute 
commands remotely on the victim’s 
machine, potentially accessing sensi-
tive data, manipulating system files, or 
spreading malware across the network.

Second, an attacker embeds a 
direct-command execution payload 
within the model. The payload ex-

Embedding 
malicious payloads 
in AI models is 
a very effective 
strategy because 
AI models are often 
shared and reused 
without thorough 
inspection. 
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source libraries and packages con-
taining unauthorized code. SCA is de-
ployed within DevSecOps pipelines to 
perform component analysis of open 
source libraries and packages at a 
granular level to check for security is-
sues in an automated manner. SBOM 

Security Defenses:  
Limitations of SCA and SBOM
Several security solutions, includ-
ing  Software Component Analysis 
(SCA)26 and Software Bill of Materi-
als (SBOM),27 have been introduced 
to handle the risks imposed on open 

b.	 c2 pseudocode: Highlights that the 
pre-trained malicious AI model is im-
ported directly using the authorization 
token for use.

	˲ Step 3. Once the user deploys the 
AI model by calling the load func-
tion, the data (command instructions) 
stored in the model file as serialized 
data is deserialized, and the system 
executes the unauthorized payload. At 
this point, the user’s system is compro-
mised because the AI model drops the 
attack payload, successfully subverting 
the system’s integrity.

	˲ Step 4. The compromised systems 
connect to the adversary-controlled 
C&C infrastructure and start nefari-
ous operations. These include exfil-
trating sensitive data such as cre-
dentials, financial information, or 
intellectual property, and transmit-
ting it back to the attacker. The mal-
ware may also receive commands to 
execute arbitrary code, leading to 
further system compromise, or lat-
eral movement within a network. It 
can also be used to disable security 
defenses, encrypt data for ransom 
(ransomware attacks), or even lever-
age compromised systems for launch-
ing broader attacks, thereby causing 
widespread disruption and damage.

 Figure. Attack flow highlighting malicious AI models execution.

AI community
platform

Pre-trained AI models repository

Step 1:
Adversary
creates and
uploads 
the malicious
AI model
(mal_ai_model)
to the repository

Step 4:
Compromised system

connects to the C&C infrastructure
to perform unauthorized operations

Step 3: User calls the load function
and executes the model file

containing payload (serialized data)

Step 2: 
User imports
the malicious

AI model from
the repository

Embedded payload
execution leads to

system compromise

model file:
deserialization and

decode byte classes

{from model_base_library import pipeline
p_handle = pipeline(”model_type”,
model = “malicious_ai_model”)}

{from model_base_library import AuthT,
AutoModelforCasualLM

t_handle = AuthT.from_pretrained(”mal_ai_model”)
m_handle = AutoModelforCasualLM.from_pretrained(”mal_ai_model”)}

AI model (pytorch, 
tensorflow) type: text classification,

named entity recognition,
machine translation, and text generation

c1

c2

Malicious operations: command
and control (C&C), data exfiltration

Table 4. Limitations of SCA and SBOM in detecting malicious AI models.

SCA and SBOM 
Limitations Description

Focus on traditional 
software components

Designed to analyze traditional software components such as libraries, depen-
dencies, and packages and do not adequately address the complexities and 
nuances of AI models involving extensive datasets, intricate algorithms, and 
unique training processes.

Lack of behavioral 
analysis and anomaly 
detection

Focus on the static aspects of software, such as versions, licenses, and known 
vulnerabilities, whereas AI models require dynamic analysis to understand 
their behavior, biases, and potential for malicious actions.

No visibility into 
training data and 
process

Do not include information about the datasets used for training AI models, so 
they fail to detect the compromised or biased training data that can lead to the 
malicious use of AI models.

No support for model 
interpretability and 
explainability

Do not offer tools to understand the internal logic and the decision-making 
processes within AI models, which is essential to detect and mitigate malicious 
behavior of AI models.

Lack of integration 
with AI-specific 
security measures

Lack integration with AI-specific security frameworks and practices, such as 
adversarial testing, model validation, and continuous monitoring for anomalous 
behavior to assess the integrity and security of both the AI models and their 
operational environments.

Evolving AI threat 
landscape

Support the detection of threats and vulnerabilities listed in public databases, 
such as common vulnerability exposures (CVEs).34 As AI-specific novel attacks 
and vulnerabilities emerge, they require continuous and adaptive security 
measures.
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can be employed in a hybrid way to 
mitigate the impact of malicious AI 
models hosted on AI infrastructure 
platforms.

By implementing these compre-
hensive measures, organizations can 
significantly reduce the risk of host-
ing malicious AI models, protect their 
software supply chains, and maintain 
the integrity of their services.

Future Challenges
Going forward, we must address sev-
eral challenges associated with the se-
curity of malicious AI models. Design-
ing AI-SBOM to maintain the security 
of the AI software supply chain will be 
challenging for several reasons. First, 
AI systems rely on a complex web of de-
pendencies, including numerous open 
source libraries, proprietary software, 
and pre-trained models, making it dif-
ficult to track all components accurate-
ly. Second, AI models and algorithms 
are frequently updated, retrained, and 
fine-tuned, resulting in continuous 
enhancements of components that 

ing monitoring to detect and mitigate 
malicious activities.

Solutions and Recommendations
Circumventing the impact of mali-
cious AI models requires a shared 
responsibility model of ensuring the 
sanctity of AI models is validated be-
fore the actual use. Platforms hosting 
AI models must provide inherent secu-
rity features, such as malicious code 
scanning, vulnerability detection, and 
risk identification of a hosted AI model 
in an automated manner to ensure 
only secure AI models are served. On 
the same note, developers (consum-
ers) should also perform additional 
security checks on their end to verify 
that the imported AI model from the 
hosting platform is secure and can be 
consumed in the development envi-
ronment. Considering software sup-
ply-chain security, the onus is on both 
the hosting providers and consumers 
to reduce risks imposed by malicious 
AI models. Table 5 discusses several 
solutions and recommendations that 

provides a detailed representation of 
components, libraries, and dependen-
cies used to create a software applica-
tion, providing transparency about 
the composition of the software. SCA 
in conjunction with SBOM are used 
as hybrid solutions to reduce the risk 
posed by malicious open source li-
braries and packages. However, SBOM 
is still in its early stages and has not 
been widely adopted. In addition, SCA 
and SBOM have inherent limitations 
to detecting malicious AI models be-
cause these models are custom gener-
ated, not designed on traditional soft-
ware design. Table 4 discusses several 
limitations of SCA and SBOM.

We believe that the SCA and SBOM 
solutions are valuable for traditional 
software security but fall short in ad-
dressing the unique challenges posed 
by malicious AI models. Ensuring the 
security of AI systems requires spe-
cialized techniques and tools tailored 
to the complexities of AI, including 
dynamic behavioral analysis, robust 
training data validation, and ongo-

Table 5. Approaches to strengthen software supply-chain security.

Category Details

Technical measures 	˲ �Use secure and robust formats to store and load model weights compared to traditional formats. Secure model formats, such as 
Hugging Face’s safetensors,25 TensorFlow SavedModel, MLflow, and Model Zoo formats (TFHub, PyTorch Hub) help address concerns 
related to model security by preventing arbitrary code execution during deserialization, which is a risk with other formats that use 
Python pickling.

	˲ �Use specialized tools to analyze AI models for anomalies, back doors, and hidden layers. A tool like CertifAI8 performs comprehensive 
security assessments to help identify unusual behaviors or structures within the model. The tool helps evaluate and ensure AI models’ 
fairness, robustness, and explainability.

	˲ �Implement rigorous validation processes using robust AI model validation11 strategies to detect and prevent the deployment of mali-
cious AI models. Employ security assessment and testing tools such as adversarial-robustness-toolbox30 and Microsoft’s Counterfit 
tool21 to simulate attacks, test robustness, and ensure that AI systems are resilient against adversarial threats.

	˲ �Use automated content-filtering4 tools in the codebase to scan and filter out harmful content generated by AI models. Use decompilers, 
static analyzers, and bytecode rewriters to extract payloads for analysis.

	˲ �Employ anomaly-detection24 techniques to uncover behavior patterns that indicate malicious activity by the AI models.
	˲ �Implement integrity checks to verify the model was not tampered with during download or transfer.

Organizational 
measures

	˲ �Implement a user-verification process to check the user’s identity to help deter threat actors from uploading harmful models.
	˲ �Develop a reputation system that rewards users who contribute securely to AI development.
	˲ �Design easy-to-report strategies to encourage the public community to report suspicious models or activities.
	˲ �Offer incentives, such as bug bounties12 or recognition within the community, to users who identify and report vulnerabilities or malicious 
models.

Policy and 
governance

	˲ �Develop documentation for all hosted AI models, including their intended use, training data, and risks or limitations.
	˲ �Publish regular transparency reports highlighting details on preventing malicious activity and control enforcement.
	˲ �Ensure platform policies follow relevant regulations and legal requirements concerning data protection and AI ethics.
	˲ �Include clauses in user agreements that hold users accountable for the misuse of their AI models.

Education and 
awareness

	˲ �Educate users about the risks of malicious AI9 and best practices for secure model development and deployment.
	˲ �Train users on ethical considerations in AI development, emphasizing the importance of creating robust AI models.
	˲ �Communicate the AI platform’s policies to prevent the hosting of malicious AI models.
	˲ �Keep users informed about new security measures, policy changes, and any incidents identified related to malicious AI.

Information sharing 	˲ �Work with other AI platforms and industry groups31 to share information about emerging AI threats and best practices for hosting AI 
models.

	˲ �Establish relationships with law enforcement2 and regulatory bodies to facilitate AI threat investigation and reporting.
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user’s environment. The threat model 
we have presented clarifies the risks 
of malicious AI models and examines 
the workflow of the attack’s execu-
tion. We need a multifaceted approach 
to combat the threat of malicious AI 
models in the software supply chain. 
Organizations must implement robust 
verification processes for third-party 
components, including thorough code 
reviews and static/dynamic analysis 
to detect anomalies. As AI technolo-
gies become more pervasive, we must 
develop and deploy AI-based defensive 
and resilient mechanisms that can 
identify and neutralize malicious AI 
activities. More collaborative efforts 
across the industry to share threat in-
telligence and best practices are also 
crucial in addressing this evolving 
threat landscape.
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must be consistently documented in 
the SBOM. Third, AI applications often 
combine proprietary code with open 
source software, complicating the 
tracking of licensing, versioning, and 
vulnerabilities across both domains. 
Fourth, unlike traditional software, 
AI systems include unique elements 
such as training datasets, model archi-
tectures, and hyperparameters, which 
are not typically covered by standard 
SBOM practices.

Moreover, we strongly advocate that 
AI model hosting platforms must ur-
gently design robust inherent security 
mechanisms to verify the integrity of 
AI models and detect model tamper-
ing, including hijacking using mali-
cious versions. There is an immediate 
need to create secure data-training 
protocols and monitoring for data-
training processes to increase the ro-
bustness and resiliency of the training 
pipeline of AI models against the em-
bedding of back doors or biases dur-
ing training, which ultimately impacts 
the sanctity of AI models. The trust-
worthiness of AI models necessitates 
securing the entire training process. 
Organizations must also expedite the 
development of tools and frameworks 
that provide greater transparency and 
explainability, making auditing and 
understanding AI model behavior easi-
er. Controlling access to AI models and 
their underlying data is paramount to 
prevent unauthorized usage and po-
tential leakage of sensitive informa-
tion, including data exfiltration. Or-
ganizations should develop advanced 
and sophisticated access-control 
mechanisms that dynamically man-
age permissions based on user roles 
and contexts. Finally, we strongly rec-
ommend establishing standardized 
security practices and strict adherence 
to defined guidelines and regulations 
to create a unified and consistent se-
curity framework for AI models. This 
is not just a recommendation but a ne-
cessity in the face of evolving AI secu-
rity threats.

Conclusion
In this research, we have presented a 
significant challenge of malicious AI 
models being consumed in software 
supply chains. Integrating malicious 
AI models without verification leads 
to unauthorized operations in the 
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