
Merged Switch Allocation and
Traversal in Network-on-Chip Switches

Giorgos Dimitrakopoulos, Emmanouil Kalligeros, Member, IEEE, and

Kostas Galanopoulos, Student Member, IEEE

Abstract—Large systems-on-chip (SoCs) and chip multiprocessors (CMPs), incorporating tens to hundreds of cores, create a

significant integration challenge. Interconnecting a huge amount of architectural modules in an efficient manner, calls for scalable

solutions that would offer both high throughput and low-latency communication. The switches are the basic building blocks of such

interconnection networks and their design critically affects the performance of the whole system. So far, innovation in switch design

relied mostly to architecture-level solutions that took for granted the characteristics of the main building blocks of the switch, such as

the buffers, the routing logic, the arbiters, the crossbar’s multiplexers, and without any further modifications, tried to reorganize them in

a more efficient way. Although such pure high-level design has produced highly efficient switches, the question of how much better the

switch would be if better building blocks were available remains to be investigated. In this paper, we try to partially answer this question

by explicitly targeting the design from scratch of new soft macros that can handle concurrently arbitration and multiplexing and can be

parameterized with the number of inputs, the data width, and the priority selection policy. With the proposed macros, switch allocation,

which employs either standard round robin or more sophisticated arbitration policies with significant network-throughput benefits, and

switch traversal, can be performed simultaneously in the same cycle, while still offering energy-delay efficient implementations.

Index Terms—Switch allocation, arbiters, crossbar, interconnection networks, and logic design

Ç

1 INTRODUCTION

INTERCONNECTION networks lie at the kernel of any complex
SoC and provide a modular infrastructure that paralle-

lizes the communication between system’s modules by
utilizing a network of switches connected with multiple
point-to-point links [1]. A critical factor to overall network’s
efficiency, both in terms of performance and power, is the
selection of the appropriate network topology that would
reduce the communication distance and utilize efficiently
the abundant on-chip wiring resources [2], [3], [4]. At the
same time, the microarchitecture of the switches detemines
the latency per node and the throughput that the network
can actually sustain [5]. The first on-chip interconnection
network designs have mimicked the designs that were
architected for large, high-performance multiprocessors.
However, as interconnects migrate to the on-chip environ-
ment, constraints and tradeoffs shift, making the effects of
switch latency and power more pronounced.

The switches follow roughly the architectures depicted
in Fig. 1 [6]. Fig. 1a shows a typical Wormhole (WH) switch
with three pipeline stages. Routing computation (RC) logic
unwraps incoming packets’ header and determines their

output destination. Such decoding and RC can be prepared
in the previous switch and used in the current one. This
optimization is called lookahead routing (LRC) [7], [8] and
allows RC to be performed in parallel with the rest tasks. At
the same time, the packet’s header competes for the selected
output port, because the rest input queues may have a
request for the same output port. If it wins this stage, called
switch allocation (SA), it will traverse the crossbar
(ST—switch traversal) in next cycle, and, one cycle later, it
will pass the output link (LT—link traversal) toward next
switch. In WH switches, the SA stage is constructed using a
single arbiter per output of the switch that decides
independently which input to serve. The grant signals of
each arbiter drive the corresponding output multiplexer
and they are given back to the inputs to acknowledge the
achieved connection. Both LRC and SA are performed only
for the head flit of each packet. The remaining body and tail
flits will follow the same route that has already been
reserved by the head flit. Therefore, in a WH router, if a
packet at the head of a queue is blocked, either because it
loses SA or because the downstream buffer is full, all
packets behind it also stall.

This head-of-line blocking problem can be solved by a
virtual-channel (VC) switch [9], as shown in Fig. 1b. In this
case, each input buffer is separated into multiple parallel
queues. Each queue is called a VC and allows packets from
different queues to bypass each other and advance to the
crossbar instead of being blocked by a packet at the head
queue. Because now an input port has multiple VC queues,
each packet has to choose a VC at the input port of the next
router (output VC) before SA. Matching input VCs to
output VCs is a task performed by the VC allocator (VA).
Since VA is performed in parallel with LRC, passing a
switch requires four cycles, as shown in Fig. 1b. The VCs of
each input share a common input port of the crossbar via a

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 10, OCTOBER 2013 2001

. G. Dimitrakopoulos is with the Electrical and Computer Engineering
Department, Democritus University of Thrace, Xanthi, Greece.
E-mail: dimitrak@ee.duth.gr.

. E. Kalligeros is with the Information and Communication Systems
Engineering Department, University of the Aegean, Samos, Greece.
E-mail: kalliger@aegean.gr.

. K. Galanopoulos is with the Electrical and Computer Engineering
Department, National Technical University of Athens (NTUA), Athens,
Greece. E-mail: galanopu@elab.ntua.gr.

Manuscript received 16 Nov. 2011; revised 29 Feb. 2012; accepted 28 Apr.
2012; published online 30 May 2012.
Recommended for acceptance by R. Marculescu.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2011-11-0897.
Digital Object Identifier no. 10.1109/TC.2012.116.

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

local multiplexer (see Fig. 1b). This is enough for on-chip
networks, because the rate of incoming traffic from each VC
does not justify the allocation of a separate port of the
crossbar to each one of them [10]. However, this feature
complicates significantly the design of the SA stage relative
to that of a WH switch. Specifically, in case of a switch with
VCs, SA is organized in two phases, because both per-input
and per-output arbitration is needed [11].1 Even though the
per-input and per-output arbiters operate independently,
their eventual outcomes in SA are very much dependent,
each one affecting the aggregate matching quality of the
switch [14], [15].

With the goal to minimize the number of pipeline stages
per switch, RC is performed in parallel to the rest operations
via lookahead, and VA operates in parallel to SA using
speculation [16], [17]. However, SA and ST remain closely
interrelated with SA always preceding and guiding ST. Such
dependency can be only removed by predicting the decisions
of SA and paying the cost of a wrong prediction [18].

The kernel of SA and ST involves arbiter and multiplexer
pairs that need to be carefully cooptimized to achieve an
overall efficient implementation. For example, the encoding
selected for the grant signals directly affects the design of
the multiplexers. In the first case, shown in Fig. 2a, the grant
decision is encoded in onehot form, where only a single bit
is set, and the multiplexer is implemented using an AND-
OR structure. On the contrary, in Fig. 2b, the multiplexer is
implemented as a tree of smaller multiplexers. In this case,
the select lines that configure the paths of each level of the
tree are encoded using weighted binary representation.

Even if the design choices for the multiplexer, at least for
a standard-cell-based design flow, are practically limited to
the alternatives shown in Fig. 2, the design space for the
arbiter is larger [19]. The arbiter, apart from resolving any
conflicting requests for the same resource, it should
guarantee that this resource is allocated fairly to the
contenders, granting first the input with the highest priority
[5]. Therefore, for a fair allocation of the resources, we
should be able to change dynamically the priority of the
inputs. A generic Dynamic Priority Arbiter (DPA), as
shown in Fig. 3, consists of two parts; the arbitration logic
that decides which request to grant based on the current
state of the priorities, and the priority update logic that
decides, according to the current grant vector, which inputs
to promote. The priority state associated with each input
may be one or more bits depending on the complexity of the
priority selection policy. For example, a single priority bit
per input suffices for round-robin policy [20], while for
more complex weight-based policies [21], such as first-
come-first-served (FCFS) [22] or age-based allocation [23],
multibit priority quantities are needed.

In this paper, we target the optimization of the combined
operation of arbitration and multiplexing, irrespective of
the complexity of the priority selection policy, aiming at the
design of efficient high-radix and low-latency switches. To
achieve this goal, we utilize a new structure called Merged
ARbiter and multipleXer (MARX) that merges efficiently the
functionality of the arbiter and the multiplexer shown in
Fig. 3, in a new circuit that performs the two steps in
parallel. Both simple round robin as well as more complex
weight-based selection policies that offer much better
throughput can be implemented following the proposed
design methodology. The transition from simple round
robin to much more efficient weight-based policies, such as
FCFS, queue-backlog-aware or shortest packet first [22], is
achieved with insignificant cycle time overhead. The

2002 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 10, OCTOBER 2013

Fig. 1. Typical switch architectures and their pipelines: (a) 3-stage WH
and (b) 4-stage VC switch.

1. An alternative to separable allocation is a centralized allocator like the
wavefront allocator [12]. The delay of wavefront allocator grows linearly
with the number of requests, while the cyclic combinational paths that are
inherent to its structure prohibit static timing analysis. The latter constraint
can be removed only after doubling the already aggravated delay [13].

Fig. 2. Design options for a 4-input multiplexer.

Fig. 3. The block diagram of a generic DPA that controls a multiplexer.

proposed circuits, besides other enhanced features, pre-
serve all the characteristics of a DPA soft macro [24], such as
the availability of the grant signals in multiple formats, and
can be implemented in two ways, thus allowing the
designer to fully explore the energy-area-delay design
space. The first approach provides delay efficient solutions
and leads to the fastest arbiter and multiplexer pairs, while
the second one targets area/energy efficiency. In every case,
the proposed designs are better than the state-of-the-art
implementation of a separate arbiter and multiplexer.

We will present the new design methodology in a step-
by-step fashion beginning in Section 2 from the design of a
fixed priority MARX unit. Then, in Section 3, we will
describe how the basic architecture can evolve to a more
sophisticated MARX that implements both standard round
robin and more complex weight-based policies. In the
following, the area/energy efficient variant of the proposed
architecture will be presented in Section 4, while the design
of MARX-based switches will be discussed in Section 5.
Experimental results that prove the benefits of the proposed
circuits are reported in Section 6. Finally, conclusions are
drawn in Section 7.

2 MARX wITH FIXED PRIORITIES

The simplest form of switch allocators is built using Fixed
Priority Arbiters (FPAs), also known as priority encoders.
In this case, the priorities of the inputs are statically
allocated and only the relative order of the inputs’
connections determines the outcome of the arbiter. In any
FPA, the request of position 0 (rightmost) has the highest
priority and the request of position N � 1 the lowest. For
example, when an 8-port FPA receives the request vector
ðR7 . . .R0Þ ¼ 01100100, it would grant input 2 because it
has the rightmost active request. When at least one request
is granted, an additional flag AG (Any Grant (AG)) is
asserted. Two examples for the implementation of an FPA
driving a multiplexer [25] are shown in Fig. 4.

Although fixed priority is not an efficient policy, and
hence it is not used in practice, we deal with it in detail
because: 1) it helps us derive the baseline MARX imple-
mentation cost; 2) it allows us to explain more easily the
design of MARX units for more complex selection policies
that are described in Section 3; and 3) it is used as a
subcircuit in the area/energy efficient design variant
presented in Section 4.

The merging of fixed priority arbitration and multi-
plexing can be achieved if we treat the request signals of the
FPA as numbers with values 0 and 1, and the fixed priority
arbitration as a sorting operation on these numbers.
Practically, the selection of the rightmost 1, as dictated by
the FPA, can be equivalently described as the selection of
the maximum number that lies in the rightmost position.

Selecting the maximum of a set of numbers can be
performed either by a tree or a linear comparison structure.
Such structures compare recursively the elements of the set
in pairs and the maximum of each pair is propagated closer
to the output. Similarly, the proposed sorting-based FPA
can be implemented as a binary tree with N � 1 comparison
nodes. Such a tree, for an 8-port FPA, is shown in Fig. 5.
Each node receives two single-bit numbers as input and
computes the maximum of the two, along with a flag, that
denotes the origin, left or right, of the maximum number. In
case of a tie, when equal numbers are compared, the flag
always points to the right according to the FPA policy. Note
though that when both numbers under comparison are
equal to 0 (i.e., between the two compared requests, none is
active), the direction flag is actually a don’t care value and
does not need necessarily to point to the right (this will be
exploited later for optimizing the MARX structure).

In every case, the path that connects the winning input
with the output is defined by the direction flags of the MAX
nodes. Thus, if we use these flags to switch the data words
that are associated with the input numbers (i.e., the
requests), we can route at the output the data word that is
associated with the winning request. This combined
operation can be implemented by adding a 2-to-1 multi-
plexer next to each MAX node and connecting the direction
flag to the select line of the multiplexer. The organization of
this merged FPA and multiplexer is shown in Fig. 6.

2.1 Logic-Level Optimization

Each MAX node should identify the maximum of two
single-bit input requests, denoted as RL and RR, and
declare via the direction flag F if the request with the
greatest value comes from the left (F ¼ 1) or the right
(F ¼ 0). The first output of the MAX node, that is the
maximum, can be computed by the logical OR of RL and
RR. The other output of the MAX node, flag F , is asserted
when the left request RL is the maximum. Therefore, F
should be equal to 1 when ðRL;RRÞ ¼ ð1; 0Þ that translates
to F ¼ RL � RR in boolean algebra. However, as noted
earlier, we can also assert the flag when ðRL;RRÞ ¼ ð0; 0Þ
because they both represent inactive requests and their

DIMITRAKOPOULOS ET AL.: MERGED SWITCH ALLOCATION AND TRAVERSAL IN NETWORK-ON-CHIP SWITCHES 2003

Fig. 4. (a) Ripple-carry and (b) Fast parallel prefix FPAs driving an AND-
OR multiplexer.

Fig. 5. Fixed-priority arbitration (priority encoding) as a sorting problem.

order is irrelevant. So, if we embed the second case to the
assertion of the direction flag, F becomes equal to RR

without changing the operation of the FPA. The OR gate
and the inverter that implement the MAX node are shown
in the right side of Fig. 6.

Additionally, the multiplexer at each node of the tree
can be further simplified to a simpler AND-OR gate after
making the following observation: If we mask to 00 . . . 0 all
the data words that are associated with an inactive request,
then when the right request RR is equal to 0, we already
know that the data from the right (DR) will be also equal to
00 . . . 0. Therefore, the Boolean relation DSEL ¼ DL � F þ
DR � F ¼ DL �RR þDR �RR that corresponds to the output
of each multiplexer, can be simplified to DSEL ¼ DL �RR þ
DR ¼ DL � F þDR, where DL and DR correspond to the
data words already masked with the input requests. In this
way, the N-bit 2-to-1 multiplexer that stands next to each
MAX node is transformed to a set of N AND-OR gates that
are all driven by the F flag in one of their ports and exhibit
better area/energy/delay characteristics than the multi-
plexer. The complete and optimized logic-level design of a
4-port MARX with fixed priorities is depicted in Fig. 7.
Please note the clear reduction in logic levels offered by the
proposed circuit compared to the fast variant of an FPA
and multiplexer in Fig. 4b.

2.2 Grant Signal Computation

The MARX, besides transferring at the output the data word
of the granted input, should also return in a useful format
the position of the winning request (or equivalently the
grant index). The proposed maximum-selection tree shown
in Fig. 5, that replaces the traditional FPA, can be enhanced
to facilitate the simultaneous generation of the correspond-
ing grant signals via the flag bits (F) of the MAX nodes.

At first, we deal with the case that the grants are encoded
in weighted binary representation. In this case, we can
observe that, by construction, the weighted-binary encoding
of the winning request is formed by putting together the flag
bits of the MAX nodes that lie in the path from the winning
input to the root of the tree (see Fig. 5, where the values L
and R of the F flag correspond to 1 and 0, respectively).
Consequently, the generation of the grant signals in
weighted-binary representation is done by combining at
each level of tree, the winning flag bits from the previous
levels with the flags of the current level. This is achieved by

means of some additional multiplexers, as shown in Fig. 8a.
Please notice that, contrary to Fig. 5, when the requests
under comparison are both equal to 0, the direction flag is
equal to 1 following the optimized implementation of the
MAX node that is shown in Figs. 6 and 7.

For the onehot encoding, we need a different implemen-
tation. Initially, i.e., at the inputs of the onehot-grant
generation circuit, we assume that every position has a
grant signal equal to 1. At the following levels, some of these
grant signals are transformed to 0s if their associated
requests are not the winning ones at the corresponding
MAX nodes. Thus, at the outputs, only a single 1 will remain
and the rest would be nullified. The circuit that generates the
corresponding grant signals in onehot form, for four input
requests, is shown in Fig. 8b. Keeping and nullifying the
grant signals is performed by the AND gates that mask at
each level of the tree, the intermediate grant vector of the
previous level with the associated direction flags.2

Observe that, if we replace the invert-AND gates of
Fig. 8b with OR gates, the outcome would be a
thermometer-coded grant vector instead of the onehot
encoded. The resulting circuit is shown in Fig. 8c. In this
way, with minimum cost, we are able to fully cover all
possible useful grant encodings, thus alleviating the need
for additional translation circuits.

Finally, the AG signal that declares if any input was
actually granted is connected to the max output of the root
node of the tree. If the maximum among all requests,
which appears at this output, is equal to 0, it means that
no input request was actually granted because all requests
were inactive.

3 MARX wITH DYNAMIC PRIORITIES

The basic idea of merging arbitration and multiplexing in a
new combined sorting-based operation can be naturally
extended to round robin and more complex weight-based
selection policies.

2004 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 10, OCTOBER 2013

Fig. 6. MARX supporting fixed priority arbitration.

Fig. 7. Optimized fixed priority MARX.

2. The design of Fig. 8b corresponds to a completely new modular
organization for the design of a priority encoder that is based on sorting,
instead of the traditional carry-propagate-like structures [25] shown in
Fig. 4.

3.1 MARX for Round-Robin Arbitration

Round-robin arbitration logic scans the input requests in a
cyclic manner beginning from the position that has the
highest priority. The priority vector P that indexes the
request with the highest priority consists of N bits, which
follow the thermometer code. For example, in the case of an
8-port round-robin arbiter, if position 3 has the highest
priority, vector P is equal to 11111000 (MSB-to-LSB). The
priority is diminishing in a cyclic manner to positions 4, 5, 6,
7, 0, 1, 2, giving to input 2 the lowest priority to win a grant.
If after scanning all inputs the circuit does not find an active
request, it deasserts the AG signal.

As shown in the example of Fig. 9, the priority vector

splits the input requests in two segments. The high-priority

(HP) segment consists of the requests that belong to HP

positions, where Pi ¼ 1, while the requests, which are placed

in positions with Pi ¼ 0, belong to the low-priority (LP)

segment. The operation of the round-robin arbiter is to give a

grant to the first active request (scanning right to left) of the

HP segment and, if not finding any, to close the cycle by
giving a grant to the first active request of the LP segment.

We can avoid this cyclic search by treating the input
requests and the priority vector in a completely different
way. Either at the HP or the LP segment, the pairs of bits
ðRi; PiÞ can assume any value. We are interested in giving
an arithmetic meaning to these pairs. Therefore, we assume
that the bits RiPi constitute a 2-bit unsigned quantity with a
value equal to 2Ri þ Pi (the request Ri is assumed to be the
most-significant bit of the two). An example of such
arithmetic symbols for a randomly selected request and
priority vector are shown in Fig. 10. From the four possible
arithmetic symbols, 3, 2, 1, 0, the symbols that represent an
active request are either 3 (for the HP segment) or 2 (for the
LP segment). On the contrary, symbols 1 and 0 denote,
respectively, an inactive request. Since we do not care about
the position of inactive requests, we can reduce the number
of symbols by mapping symbol 1 to 0.

According to round-robin policy and the example priority
vector of Fig. 10, the arbiter should start looking for an active
request from position 3 and grant the one that lies on
position 4, which is the first (rightmost) request of the HP
segment. This operation is equivalent to granting the first
maximum symbol found when searching from right to left.
This general principle also holds for the case that the HP
segment does not contain any active request. Then, all
arithmetic symbols of the HP segment would be 0 and any
active request on the LP segment would be mapped to 2.
Therefore, the introduction of the arithmetic symbols

DIMITRAKOPOULOS ET AL.: MERGED SWITCH ALLOCATION AND TRAVERSAL IN NETWORK-ON-CHIP SWITCHES 2005

Fig. 8. The grant generation circuits that run in parallel to the MAX nodes.

Fig. 9. The priority vector separates the input requests to an HP and an
LP segment.

Fig. 10. The translation of the request and the priority vector to
arithmetic symbols removes the cyclic search.

practically transforms the cyclic round-robin arbitration to
an acyclic sorting operation, as in the case of a FPA discussed
in Section 2.

Thus, similar to the proposed FPA shown in Fig. 5, a
binary tree can be utilized for selecting the maximum
symbol. Two 8-input examples of the operation of the
proposed round-robin arbiter are shown in Fig. 11. In the
first case, the first request of the HP segment wins, while in
the second case, there are no requests in the HP segment
and the first request of the LP segment, in a round-robin
order, wins. At each node of the tree, the L and R flags
denote if the winning symbol belongs to the left or the
right subtree, respectively. From both examples, it is
evident that even if the comparison is performed directly
on the 2-bit symbols, the result obeys the rules dictated by
the round-robin policy. Similar to Fig. 6 the direction flags
can be used to switch directly the corresponding data
words. The only thing that differentiates this approach to
the fixed priority case shown in Fig. 6 is the implementa-
tion of the new MAX node.

From the implementation viewpoint, the bottleneck
operation is the selection of the maximum between the
2-bit arithmetic symbols. To significantly speedup this
operation, we choose to recode the arithmetic symbols to
thermometer codewords as shown in Fig. 12. This recoding
of the symbols f0; 2; 3g ! f00; 01; 11g is useful because now
the maximum symbol can be easily identified as the one with
the largest number of consecutive 1 s, which is equivalently
reduced to a bitwise OR operation of the symbols under
comparison (this is a property of thermometer coding that
can be easily verified).

With this in mind, the MAX nodes used for the case of
round-robin policy receive two thermometer codewords of
2 bits each. Identifying their maximum is easy because it
involves two OR gates that run in parallel and compute

the maximum thermometer codeword of the two. This is
shown in the lower right corner of Fig. 13. The direction
flag points to the left (F ¼ 1) when the pairs of symbols
(2, 0), (3, 0), (3, 2) arrive at the inputs of the MAX. To this
set, we can also add two don’t care conditions: The pair of
symbols (0, 0) that represents two inactive requests, and,
thus, their relative order does not play any role, and the
pair (2, 3) that never happens because an active request in
the LP segment (symbol 2) cannot be in a more-significant
position compared to an active request of the HP segment
(symbol 3). The logic level implementation of the direction
flag that embeds all the aforementioned conditions is also
shown in Fig. 13. Observing the derived circuit, we see
that the proposed methodology not only merges round-
robin arbitration with multiplexing, which is the first step
for significant delay improvement, but also achieves this
goal with a very compact circuit that consists only of an
AOI gate for the direction flag and two OR gates for the
computation of the maximum symbol.3 Hence, the circuit
variant of Fig. 13 constitutes the delay optimized version
of the proposed architecture.

The grant signals computation circuits presented in Fig. 8
can be directly employed without any modification,
because their functionality depends only on the direction
flag, and thus, they are not affected by the granularity of the
calculations performed by the MAX nodes. Also, in this
case, the AG flag is produced via a OR gate at the root of
tree that detects if the maximum symbol is non-zero.

3.2 MARX with Weight-Based Arbitration

Arbiters implementing more complex selection policies,
such as backlog-aware policies [21], or FCFS [22], can be

2006 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 10, OCTOBER 2013

Fig. 11. The round-robin arbiter selects the rightmost maximum symbol.
When there are no active requests in the HP segment, without any
cyclic-priority transfer, the first request of the LP segment is granted.

Fig. 12. Input arithmetic symbols recoding to 2-bit thermometer
codewords.

3. The more complex function that flag F implements in this case does
not allow us to simplify the multiplexers of the merged round-robin arbiter
multiplexer to simpler AOI gates, as done in the case of the merged FPA
multiplexer (Fig. 7).

Fig. 13. The structure of the delay optimized MARX implementing round-
robin policy.

designed in the same way as for simple round robin. In
these cases, each input is associated with a weight that
denotes the input’s priority relative to the rest inputs.
Although the maximum value of the weights can be chosen
arbitrarily, in most cases it suffices to equal the number of
input ports [24]. The operation of the arbiter is to find the
requests with the largest weight and then to select among
them the one that appears first in a fixed order.
Consequently, the arbiter’s implementation is similar to
that presented for the round-robin policy, if the weights are
thermometer coded.

Specifically, assume that in this case, each MAX node
receives twoN-bit thermometer coded weights LN�1LN�2. . .
L0 and RN�1RN�2 . . .R0 that come from the left and right
side, respectively. Since the weights are thermometer coded,
their maximum is again computed by the bitwise OR of the
two input vectors. Thermometer encoding helps also in the
derivation of the direction flag. Flag F is asserted (F ¼ 1)
when the left symbol is larger than the right one. This
happens only if the L vector has more 1 s than the R vector,
which means that there is at least one position i of the two
vectors where ðLi; RiÞ ¼ ð1; 0Þ. Based on this observation,
we can compute flag F as follows:

F ¼ LN�1 � RN�1 þ LN�2 �RN�2 þ � � � þ L0 � R0:

The logic-level implementation of this generic MAX node is
shown in Fig. 14. As it will be shown in the experimental
results section, the delay overhead compared to the simple
round-robin case is negligible. Also, similar to standard
round robin, in the case of weight-based arbitration, the
weights entering the arbitration logic and correspond to
inactive requests should be set equal to zero. Thus, only the
active weights, i.e., the ones associated with active requests,
participate in the comparisons. As for the AG flag, it is
simply computed via an N-input OR gate that checks if the
maximum symbol presented at the output of the root node
equals a non-zero vector.

If the weights are stored in weighted binary representa-
tion, then a fast binary-to-thermometer decoder with few
logic stages (e.g., [20]) should be employed before the
arbitration logic.

The various arbitration policies are differentiated only by
the way the weight of each input is updated in each cycle.
For example in FCFS, the priority of the currently granted
client is set to the lowest priority, while the priorities of all
the requesting clients not yet been granted are increased by
one. If the weights are stored as thermometer codewords,
their increment is just a simple shift by one that does not

require more hardware than 2-to-1 multiplexers and
appropriate wire rearrangement. In every case, the delay
of the priority update logic should not be a problem because
its operation overlaps in time with that of multiplexing.
Also, the fact that the proposed circuits can provide, in
parallel to arbitration and multiplexing, the position of the
winning input (grant index) in multiple formats (see
Section 2.2) removes the need for extra translation circuits
in the priority update logic that are found in other fast
arbiter implementations [20], [26].

4 AREA/ENERGY EFFICIENT MARX wITH DYNAMIC

PRIORITIES

The already presented MARX units follow the same generic
architecture and implement the corresponding priority
selection policy, either fixed, round robin, or weight based,
utilizing a sorting-based structure. In this way, arbitration
and multiplexing are fully parallelized and delay efficient
circuits can be constructed.

Nevertheless, we would like to take advantage of the
simplified hardware structure presented in Fig. 7 for the
case of MARX with fixed priorities, and design area/
energy efficient structures for the rest selection polices too,
namely round robin and weight based. This is performed
by following a new two-step algorithm that is graphically
depicted in Fig. 15. The first step transforms the requests
and the corresponding input priority state to a new
reduced request vector that involves only equal priority
requests. Then, in the second step, a fixed-priority MARX
unit operates on the reduced request vector and grants the
active request with the highest priority, transferring also to
the output the corresponding data.

At first, let us see how we can derive a reduced request
vector for the case of round-robin selection policy. In the
example shown in Fig. 16, the arbiter should start looking
for an active request from position 3 and grant the one that
lies on position 4, which is the first (rightmost) request of
the HP segment. We have seen that this operation is
equivalent to granting the first maximum symbol found
when searching from right to left. Practically, the request
on position 4 needs to fight for a grant only with the
requests with equal maximum symbols. Therefore, our
goal is to generate a reduced request vector that involves
only the requests that are associated with the maximum
arithmetic symbol. The requests that correspond to smaller
weights should be filtered out. The reduced request vector
for the arithmetic symbols 33030220 of the example of
Fig. 16 would be equal to 11010000, having a 1 only in the
positions that correspond to a symbol 3, which is the
largest. Then, using an FPA driven by the reduced request

DIMITRAKOPOULOS ET AL.: MERGED SWITCH ALLOCATION AND TRAVERSAL IN NETWORK-ON-CHIP SWITCHES 2007

Fig. 14. The implementation of the MAX node in the case of weight-
based priority selection policies.

Fig. 15. Two-step arbtration logic; FPA is merged with the output
multiplexer.

vector, as shown in Fig. 15, suffices to identify the
rightmost active request with the highest priority, which
lies on position 4 in this example.

The transformation of the input requests and the
priority vector to a reduced request vector involves finding
first the maximum symbol and then marking the positions
that have a symbol equal to the maximum. Since the
symbols are thermometer coded, computing their max-
imum can be performed by a bitwise OR of all the elements
of the set. Thus, in our case, we need two N-input OR gates
to compute the maximum 2-bit arithmetic symbol. Then, as
shown in Fig. 16, we can easily identify the positions that
have the same priority as that of the maximum symbol, by
employing a 2-bit equality comparator at each position. The
output of each 2-bit equality comparator drives the
corresponding bit of the reduced request vector, which is
then passed to the fixed-priority MARX.

Extending the derivation of the reduced request vector
for the case of weight-based selection is trivial. The
maximum N-bit thermometer coded weight is derived in
the same way as in the round-robin case, while a N-bit
comparator at each bit position checks if this position has a
weight equal to the maximum. Those that do, will have their
corresponding bit asserted at the reduced request vector.

5 MARX-BASED SWITCHES

The design of WH switches that employ the proposed
dynamic priority MARX units is straightforward. Fig. 17
depicts how a 2-input x 2-output WH switch that uses
separate arbiters and multiplexers can evolve to a MARX-
based switch, with RC either preceding (left subfigure), or
performed in parallel to MARX (by employing LRC—right
subfigure). The arbiter-multiplexer pairs at each output are
directly replaced by the corresponding dynamic priority
MARX units. In this way, the tasks of SA and ST of the
original WH switch (see Fig. 1) are merged to a new stage
called switch allocation and traversal (SAT), which is
directly implemented by the new MARX units and allows
for efficient low-latency WH switch implementation.

In the case of switches with VCs, the design is more
complicated due to the per-input and per-output stages of
arbitration and multiplexing. An input-first allocator allows
each input to send to the outputs the request of a single VC.
To decide which request to send, each input arbitrates
locally among the requests of each input VC. On the
contrary, in the case of output-first allocation, all VCs are

free to forward their requests to the output arbiters and
then a local arbitration takes place again to select one
among the possibly many output grants that the input
received. Input-first allocation allows some time overlap
between local input multiplexing and per-output arbitra-
tion. Such an overlap is not possible in output-first
allocation, where both stages of arbitration should be first
completed before driving the multiplexers.

The rough organization of VC-based switches with N
input/output ports and V VCs per input that use MARX
is shown in Fig. 18. The presented alternatives follow
exactly the input and output-first allocators presented in
[6], [10], where the identified arbiter and multiplexer pairs,
including those of the crossbar, have been replaced by
MARX units. In each figure, the order of signal propaga-
tion has been depicted with time steps so as to clarify the
order of events. In both cases, we assume that each input
VC has the output requests ready because LRC is
employed.

2008 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 10, OCTOBER 2013

Fig. 16. The computation of the reduced request vector that contains
only equal-priority requests.

Fig. 17. WH switches using MARX units.

Fig. 18. VC switches with MARX units: (a) input first, (b) output first.

Step 1 of Fig. 18a first concatenates the per-output
requests of each input VC along with the corresponding
data. This is done because the requests of the winning VC
for each input, should reach the per-output arbiters along
with the corresponding data, to participate in the output
arbitration stage. If an input VC requests an output, then it
will participate in the local (per-input) arbitration. If one
active request exists in an input VC, this is computed by the
local per-input VC OR gates. As long as the local arbitration
finishes, i.e., at step 2, the data and the output requests are
concurrently provided at the output of the V : 1 MARX unit.
At step 3, the winning data and the corresponding output
requests are distributed to the N output MARX units that
perform both global (per-output) arbitration and data
movement. This task is finished at step 4, where the correct
data have reached the outputs of the switch and start LT.
Concurrently, on step 5, the grants of the outputs are
gathered per input to inform the winning input VC (if an
input’s VC has won global arbitration, then the OR
operation of the corresponding grant signals of the per-
output MARX units will be equal to 1, and, as a result, the
input’s local grants will be enabled via the bitwise AND
operation shown in Fig. 18a).

On the contrary, in the output-first case shown in
Fig. 18b, all the output requests of the input VCs are
initially gathered per output (bitwise OR operation of the
VCs’ request vectors) and distributed to the output MARX
units. At this step (step 1), only the arbitration part of MARX
works, because the data selected per input will arrive at the
output MARX units on step 4. On step 2, arbitration is
finished and the grants for each input are gathered together.
The bitwise AND operation promotes only the requests that
have been granted for every input, which are then merged
together per VC via an OR operation, to form a single-bit
request (per VC). On step 3, local arbitration is performed
concurrently with the movement of the data of the winning
VCs (those already granted by the outputs), by the per-input
MARX units. The data are then distributed to the output
MARX units (step 4), which switch them to the correct
output on step 5. Observe that during this step, no per-
output arbitration takes place, because the paths between
inputs and outputs have already been set (on step 1).

We have to note that output-first allocators will always
be slower than input-first allocators, either if they are
implemented with separate components or with MARX
macros. The reason is a fundamental property of output-
first allocation (the inability of overlapping in time input
multiplexing and output arbitration) and not a property of
the circuits used for its implementation. The purpose of
MARX is to reveal the concurrency of arbitration and
multiplexing locally (at the inputs or at the outputs) and to
translate it to either delay reductions or energy savings.

The matching quality of the allocator, besides its
structural properties, input or output first, is decisively
determined by the followed priority update policy. Sophis-
ticated weight-based policies, such as FCFS, or age-based
allocation that provably yield significant throughput bene-
fits at the network level, can be designed more efficiently
with MARX, without compromising the clock frequency of
the switch (see Section 6).

In VC-based switches, it is possible all input VCs to be
accommodated on a shared memory space that is imple-
mented using an SRAM block, while the manipulation of

the VCs is done via a linked-list-like structure. Since the
input VCs are held inside an SRAM block, there is no
multiplexer that connects the input VCs to the input port of
the crossbar (practically this multiplexer implicitly exists
inside the SRAM, implemented virtually by the bitlines of
the SRAM). For this reason, in the first stage of allocation,
only an arbiter is used and there is no need for a MARX
module. MARX is employed only in the second stage,
merging in one circuit the per-output arbiters and the
multiplexers of the crossbar. In this case, MARX allows the
overlap of buffer read and per-output arbitration tasks as
well, because the arbiter inside MARX, implemented by the
MAX nodes, does not require the data to be ready at the
inputs of the corresponding multiplexers.

Finally, MARX can be also used for the implementation
of adaptive switches [8], [27], where each input (for WH) or
input VC (for VC-based switches) can request more than
one output ports. The output port that will be actually
selected is a matter of an additional selection unit (not
shown in Figs. 17 and 18) that either picks randomly a
destination or decides after sensing the state of the network
[27]. Apart from the selection unit, the organization of the
rest of the switch will be exactly the same as that shown in
Fig. 17 or Fig. 18. Note though that the selection unit in a
MARX-based adaptive switch will not be a MARX module,
because MARX takes care of arbitration and data switching
(multiplexing). Its utilization as a selection unit would
introduce unnecessary hardware overhead without offering
any benefit. Moreover, a selection unit takes into account
other criteria that try to load balance traffic throughout the
network and it does not perform arbitration like MARX.

6 EXPERIMENTAL RESULTS

In this section, we present the results gathered after
performing various sets of experiments that helped us
quantify the benefits of the proposed MARX units. In all
cases, the designs were implemented in a 65-nm CMOS
technology using a standard-cell-based design flow. The
parameterized form of the circuits was described in VHDL,
while synthesis, placement and routing were performed
using Synopsys Design Compiler and Cadence SOC en-
counter, respectively. Timing analysis and power measure-
ments were performed after back annotating all parasitic
information extracted from the layout.

In the first set of experiments, we want to quantify the
benefits of the proposed fixed priority MARX design of
Fig. 7 (denoted as MARX-FP) versus the baseline combina-
tion of a separate FPA driving a multiplexer. For both the
circuits under comparison, we designed a complete switch
allocator and a crossbar for an N �N switch that consists
of a separate arbiter and a multiplexer per output. The
combined operation of SAT determines the critical path of
single-cycle switch implementations, assuming that RC [28]
is performed in parallel by utilizing the routing lookahead
technique [7]. Both the input data and the input requests
are registered. The same also holds for the data outputs of
the switch. These output registers practically put switch
and LT in different cycles and they are employed in almost
any switch implementation. The registers at each output of
the switch are loaded with a 0.2pF capacitance, which
corresponds roughly to the capacitance of a 1-mm metal-5
wire in our technology.

DIMITRAKOPOULOS ET AL.: MERGED SWITCH ALLOCATION AND TRAVERSAL IN NETWORK-ON-CHIP SWITCHES 2009

The energy-delay curves derived for a 4� 4 and an 8� 8
switch, with a data width of 32 bits, for both circuits under
comparison are shown in Fig. 19. In every case, MARX-FP is
both faster and less energy consuming than the fastest
version of a separate FPA and multiplexer in the literature
(Fig. 4b). The same results hold even for a wider data path
of 64 and 128 bits. The reported savings stem from the
optimized sorting-based structure presented in Fig. 7 that
parallelizes, with low complexity, request arbitration and
data movement.

Although this concurrent movement of requests and data
seems to increase the switching activity relative to the
baseline design, this is done only slightly, assuming that
both designs are driven by register-based input queues.
Such concurrent movement of data and requests is chosen
even in the case of SRAM-based input queues without
worrying about the extra switching activity. For example, a
recent design from Intel chooses to speculatively read out of
the memories the requesting flits and send them to the
crossbar, even if they do not actually win SA [29]. This is
performed to reduce delay by overlapping in time, as much
as possible, the buffer read and SA. The switching activity
caused by a flit leaving the switch is the same for all
methods. The only decisive parameter is the structure of the
crossbar’s multiplexers (Fig. 2) and the overall throughput
of the switch. At high throughput, with data leaving the
switch from all output ports almost on every cycle, high
switching activity is inevitable.

In the following, we compared the proposed delay-
optimized round-robin MARX design (denoted as F-
MARX-RR, i.e., Fast-MARX-Round Robin) against a sepa-
rate round-robin arbiter driving a multiplexer (denoted
simply as RR). The fastest approach for the latter pair
involves the parallel-prefix arbiters of [30] along with the
AND-OR implementation of the multiplexer (Fig. 2a). As in
the previous example, for all designs under comparison, we
implemented a complete switch allocator and crossbar,
including also for each arbiter the corresponding priority
state and priority update logic shown in Fig. 3.

The derived energy-delay curves are shown in Fig. 20. In
both cases, the proposed F-MARX-RR configuration, shown
in Fig. 13, offers the minimum delay. The delay savings are
more than 8 percent compared to the high-speed separate
RR arbiter-multiplexer implementation and they increase
above 15 percent for switch radices of 16 ports or more. The
separate arbiter multiplexer and the area/energy efficient
implementation of MARX (denoted as E-MARX-RR, where
“E” stands for Energy efficient) consume nearly the same
amount of energy, with the proposed one being slightly
better, while, in terms of speed, the separate FPA and
multiplexer is slightly faster than E-MARX-RR (4 percent in
average). From Fig. 20, we can observe that the E-MARX-RR
is on average 20 percent more energy efficient than F-
MARX-RR, when compared under equal delay. Note that
the area-delay behavior of all the designs follows roughly
the presented energy-delay behavior, with only 2-3 percent

2010 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 10, OCTOBER 2013

Fig. 19. The energy-delay curves for the baseline case of separate FPA
and multiplexer versus the proposed MARX with fixed priority.

Fig. 20. The energy-delay curves for the case of round-robin arbiters
and multiplexers.

difference in the area overheads of F-MARX and savings of
E-MARX relative to the separate arbiter multiplexer case.

These results lead us to the conclusion that although the
proposed designs are based on a generic architecture that
can also handle more complex weight-based selection
policies and computes the grant signals in multiple formats,
it offers, even for the simple round-robin policy, two circuit
alternatives that can be either faster or more energy efficient
than the most efficient round-robin-only design. We also
verified experimentally that the same trend is followed in
the case of switches with VCs that employ the round-robin
selection policy both in the per-input and the per-output
allocation step, assuming, for the proposed modules, the
organization shown in Fig. 18.

To measure the significance of this result, we should
take also into account that previous state-of-the-art designs
do not provide any obvious way of extending their
functionality to other selection policies. The same holds
for other ad hoc techniques that aim at simultaneously
performing arbitration and multiplexing [31], [32]. Besides
their tricky circuit architectures, they are designed to follow
only a specific form of arbitration policy that has serious
limitations and leads to network-wide performance losses.

Also, it should be made clear that the energy of the
switch allocator and the crossbar is just 20-30 percent of the
power consumption of the switch [33], [29]. The majority of
the switch’s power is dissipated by the buffers and on the
network links. Therefore, even the 20-30 percent energy
overhead of F-MARX-RR does not translate to more than
4-9 percent of energy overhead in the switch as a whole. For
example, the capacitance of four 32-bit output links of 2 mm
is equal to 51.2 pF, assuming that the wire capacitance is
roughly equal to 0.2 pF/mm. If the links operate at 1 V, as in
the case of our library, with 0.05 to 0.1 switching activity
factor, then their energy will be between 2.56 and 5.12 pJ per
operation, which is either equal or greater than the
measured energy of the MARX-based switches.

The effectiveness of the generality of the proposed
architecture is tested in the last set of experiments that
measure the delay overhead imposed by a sophisticated
weight-based policy, namely FCFS, relative to the best delay
achieved by the most efficient stand-alone round-robin
arbiter implementation and multiplexer (RR and MUX) that
was also used in the previous experiments. As shown in
Fig. 21, the delay reported from the proposed modules

involves both the E-MARX and the F-MARX implementa-
tions (their weighted versions are denoted as E-MARX-W
and F-MARX-W, respectively). The delay optimized version
shows its full potential at high radices, while for small
switches of four ports, the area optimized version has
smaller delay too. Additionally, from the bars of Fig. 21, it is
obvious that the delay overhead imposed by the adoption of
a weight-based selection policy implemented with MARX
units, relative to simple round robin with separate modules
(the RR and MUX bars) is negligible and diminishes as the
radix of the switch increases. In fact, at 16 ports, F-MARX-W
has a delay equal to the delay of a separate round-robin
arbiter and multiplexer. This is probably one of the largest
advantages of the proposed macros; they can be directly
utilized for implementing more efficient selection policies
that yield significant throughput benefits at the network
level [22], while, at the same time, these performance
benefits are not compromised by the clock frequency of the
switches, because the latter are only slightly slower or
equally fast to the standard round-robin case.

7 CONCLUSIONS

In any engineering discipline, the quality of the building
blocks that are available to the designer, crucially deter-
mines the quality of the final product. The same principle
holds also in the case of on-chip network switches that can
significantly benefit by the adoption of the proposed MARX
units. The proposed circuits adapt efficiently to simple and
more complex arbitration policies under a generic archi-
tecture, and, at the same time, offer area/energy/delay
efficient implementations due to their merged arbitration
and multiplexing structure and the new sorting-based
arbitration algorithms. In any case, their application is
orthogonal to all other architectural techniques and can
help the designer invent switch organizations that are
currently unexplored.

REFERENCES

[1] W.J. Dally and B. Towles, “Route Packets, Not Wires: on-Chip
Interconnection Networks,” Proc. 38th Design Automation Conf.
(DAC), June 2001.

[2] A. Golander, N. Levison, O. Heymann, A. Briskman, M.J. Wolski,
and E.F. Robinson, “A Cost-Efficient L1-L2 Multicore Intercon-
nect: Performance, Power, and Area Considerations,” IEEE Trans.
Circuits and Systems-I: Regural Papers, vol. 58, no. 3, pp. 529-538,
Mar. 2011.

[3] P. Kumar, Y. Pan, J. Kim, G. Memik, and A. Choudhary,
“Exploring Concetration and Channel Slicing in on-Chip Network
Router,” Proc. Int’l Symp. High-Performance Computer Architecture
(HPCA), Feb. 2009.

[4] B. Grot, J. Hestness, S.W. Kekler, and O. Mutlu, “Express Cube
Topologies for on-Chip Interconnects,” Proc. 15th Int’l Symp. High-
Performance Computer Architecture (HPCA), 2008.

[5] W.J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2004.

[6] G. Dimitrakopoulos and D. Bertozzi, “Switch Architecture,”
Designing Network on-Chip Architectures in the Nanoscale Era, Jose
Flich and Davide Bertozzi, eds., CRC Press, 2010.

[7] M. Galles, “Spider: A High-Speed Network Interconnect,” IEEE
Micro, vol. 17, no. 1, pp. 34-39, Jan./Feb. 1997.

[8] A.S. Vaidya, A. Sivasubramaniam, and C.R. Das, “Lapses: A
Recipe for High Performance Adaptive Router Design,” Proc. Fifth
Int’l Symp. High Performance Computer Architecture (HPCA ’99),
pp. 236-243, 1999.

[9] W.J. Dally, “Virtual-Channel Flow Control,” Proc. 17th Ann. Int’l
Symp. Computer Architecture (ISCA), pp. 60-68, May 1990.

DIMITRAKOPOULOS ET AL.: MERGED SWITCH ALLOCATION AND TRAVERSAL IN NETWORK-ON-CHIP SWITCHES 2011

Fig. 21. The delay of the proposed switches implementing FCFS policy
versus the fastest separate arbiter and multiplexer implementing round-
robin policy.

[10] D.U. Becker and W.J. Dally, “Allocator Implementations for
Network-on-Chip Routers,” Proc. ACM/IEEE Int’l Supercomputing
Conf., 2009.

[11] S.S. Mukherjee, F. Silla, P. Bannon, J.S. Emer, S. Lang, and D. Webb,
“A Comparative Study of Arbitration Algorithms for the Alpha
21364 Pipelined Router,” Proc. 10th Int’l Conf. Architectural Support
for Programming Languages and Operating Systems (ASPLOS-X),
2002.

[12] Y. Tamir and H.-C. Chi, “Symmetric Crossbar Arbiters for VLSI
Communication Switches,” IEEE Trans. Parallel and Distributed
Systems, vol. 4, no. 1, pp. 13-27, Jan. 1993.

[13] J. Hurt, A. May, X. Zhu, and B. Lin, “Design and Implementation
of High-Speed Symmetric Crossbar Schedulers,” Proc. IEEE Int’l
Conf. Comm. (ICC), pp. 253-258, June 1999.

[14] A. Kumar, P. Kundu, A. Singh, L.-S. Peh, and N.K. Jha, “A
4.6 Tbits/s 3.6 GHz Single-Cycle Noc Router with a Novel Switch
Allocator in 65Nm CMOS,” Proc. IEEE Int’l Conf. Computer Design
(ICCD), 2007.

[15] M. Azimi, D. Dai, A. Mejia, D. Park, R. Saharoy, and A.S. Vaidya,
“Flexible and Adaptive on-Chip Interconnect for Tera-Scale
Architectures,” Intel Technology J., vol. 13, no. 4, pp. 62-77, 2009.

[16] L.-S. Peh and W.J. Dally, “A Delay Model and Speculative
Architecture for Pipelined Routers,” Proc. Seventh Int’l Symp. High-
Performance Computer Architecture (HPCA-7), 2001.

[17] R.D. Mullins, A.F. West, and S.W. Moore, “Low-Latency Virtual-
Channel Routers for on-Chip Networks,” Proc. Int’l Symp.
Computer Architecture (ISCA), pp. 188-197, 2004.

[18] H. Matsutani, M. Koibuchi, H. Amano, and T. Yoshinaga,
“Prediction Router: Yet Another Low Latency on-Chip Router
Architecture,” Proc. IEEE Symp. High-Performance Computer Archi-
tecture (HPCA), pp. 367-378, Feb. 2009.

[19] G. Dimitrakopoulos, “Logic-Level Implementation of Basic
Switch Components,” Designing Network on-Chip Architectures in
the Nanoscale Era, Jose Flich and Davide Bertozzi, eds., CRC Press,
2010.

[20] P. Gupta and N. McKeown, “Design and Implementation of a Fast
Crossbar Scheduler,” IEEE Micro, vol. 19, no. 1, pp. 20-28, Jan./
Feb. 1999.

[21] N. Chrysos and G. Dimitrakopoulos, “Practical High-Throughput
Crossbar Scheduling,” IEEE Micro, vol. 29, no. 4, pp. 22-35, July/
Aug. 2009.

[22] M. Pirvu, L. Bhuyan, and N. Ni, “The Impact of Link Arbitration
on Switch Performance,” Proc. Fifth Int’l Symp. High-Performance
Computer Architecture (HPCA), 1999.

[23] D. Abts and D. Weisser, “Age-Based Packet Arbitration In Large
K-Ary N-Cubes,” Proc. ACM/IEEE Conf. Supercomputing (SC), 2007.

[24] Synopsys, “Arbiter with Dynamic Priority Scheme,” DesignWare
Building Block IP, www.synopsys.com, June 2009.

[25] N. Weste and D. Harris, CMOS VLSI Design a Circuits and Systems
Perspective, third ed. Addison Wesley, 2010.

[26] C. Savin, T. McSmyrthus, and J. Czilli, “Binary Tree Search
Architecture for Efficient Implementation of Round Robin
Arbiters,” Proc. IEEE Int’l Conf. Acoustics, Speech, Signal Processing
(ICASSP), 2004.

[27] G. Ascia, V. Catania, M. Palesi, and D. Patti, “Implementation and
Analysis of a New Selection Strategy For Adaptive Routing in
Networks-on-Chip,” IEEE Trans. Computers, vol. 57, no. 6, pp. 809-
820, June 2008.

[28] J. Flich and J. Duato, “LBDR: Logic-Based Distributed Routing for
NoCs,” IEEE Computer Architecture Letters, vol. 7, no. 1, pp. 13-16,
Jan. 2008.

[29] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla, Y.
Hoskote, S. Vangal, G. Ruhl, P. Kundu, and N. Borkar, “A 2Tb/s
6x4 Mesh Network with DVFS and 2.3Tb/s/W Router in 45nm
CMOS,” Proc. Symp. VLSI Circuits, 2010.

[30] G. Dimitrakopoulos, N. Chrysos, and C. Galanopoulos, “Fast
Arbiters for on-Chip Network Switches,” Proc. IEEE Int’l Conf.
Computer Design (ICCD), pp. 664-670, 2008,

[31] K. Lee, S.-J. Lee, and H.-J. Yoo, “A Distributed On-Chip Crossbar
Switch Scheduler for on-Chip Network,” Proc. Custom Integrated
Circuits Conf. (CICC), Sept. 2003.

[32] A.O. Balkan, G. Qu, and U. Vishkin, “Arbitrate and Move
Primitives for High-Throughput on-Chip Interconnect,” Proc. Int’l
Symp. Circuits and Systems (ISCAS), 2004.

[33] J. Balfour and W.J. Dally, “Design Tradeoffs for Tiled CMP on-
Chip Networks,” Proc. 20th ACM Int’l Conf. Supercomputing (ICS),
June 2006.

Giorgos Dimitrakopoulos received the Dipl Ing
in computer engineering from Computer Engi-
neering and Informatics Department of the
University of Patras in 2001, the MSc degree
in “integrated hardware-software systems” in
2003, and the PhD degree from the same
department in 2007. Between 2008 and 2010,
he worked as a postdoctoral fellow at the
Computer architecture and VLSI Systems Lab
of the Institute of Computer Science (ICS) of the

Foundation for Research and Technology Hellas (FORTH) and at the
University of Crete. Later on, he was appointed as a lecturer to
the Informatics and Communication Engineering Department, of the
University of West Macedonia, Kozani, Greece. Since January 2012, he
has been a lecturer of Digital Integrated Circuits in the Electrical and
Computer Engineering Department of the Democritus University of
Thrace (DUTH), Xanthi, Greece. His research interests lie in the broad
areas of digital integrated circuits and computer architecture, and more
specifically, he is interested in the design of on-chip interconnection
networks for both ASIC and FPGA fabrics, in ultra low-power digital
design, as well as in the definition of new architectures for high-
performance graphics accelerators. He regularly serves as a reviewer
for various IEEE journals and conferences, and as a member of the
technical program committee in recent FPL and DATE conferences as
well as INA-OCMC and NoCArch workshops.

Emmanouil Kalligeros received the Diploma in
computer engineering and informatics in 1999,
the MSc degree in computer science and
technology in 2001, and the PhD degree in
embedded testing in 2005, all from the Compu-
ter Engineering and Informatics Department,
University of Patras, Greece. Between 2006
and 2008, he served as an adjunct professor at
University of Patras, University of Peloponnese
and University of the Aegean, teaching courses

related to electronics and digital circuits design. Since 2008, he has
been a faculty member at the Information and Communication Systems
Engineering Department, University of the Aegean, Samos Island,
Greece, where he currently holds an assistant professor position. His
main research interests include VLSI design and test, design for
testability, CAD methodologies for VLSI testing and test-data compres-
sion architectures. In these areas, he has published more than 30
papers in prestigious international journals and conferences. He also
serves as an invited reviewer in various well-known conferences and
most accredited journals. He is a member of the Technical Chamber of
Greece and the IEEE.

Kostas Galanopoulos received the Diploma
degree in computer engineering and informatics
from the University of Patras, Greece in 2009,
and is currently working toward the PhD degree
in electrical and computer engineering at the
National Technical University of Athens, Greece.
He has coauthored six technical papers in IEEE
journals and conferences. His research interests
include design and optimization of mixed-signal,
digital and microprocessor data path circuits,

low-power optimization, and all-digital frequency synthesis techniques.
He regularly serves as a reviewer for IEEE transactions and conferences.
He is a student member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2012 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 10, OCTOBER 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

