
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y x x x (2 0 1 3) 1e1 3
Available online at w
journal homepage: www.elsevier .com/locate/cose
Secloud: A cloud-based comprehensive and lightweight
security solution for smartphones
Saman Zonouz b,*, Amir Houmansadr a, Robin Berthier a, Nikita Borisov a,
William Sanders a

aUniversity of Illinois, Department of Electrical and Computer Engineering, 1251 Memorial Drive, McArthur Bl., Coral Gables,

FL 33146, United States
bUniversity of Miami, United States
a r t i c l e i n f o

Article history:

Received 16 June 2012

Received in revised form

31 January 2013

Accepted 4 February 2013

Keywords:

Smartphone security

Intrusion detection

Cloud computing

Energy-aware security

Real-time intrusion response
* Corresponding author.
E-mail addresses: s.zonouz@miami.edu (

illinois.edu (N. Borisov), whs@illinois.edu (W

Please cite this article in press as: Zonouz
smartphones, Computers & Security (201

0167-4048/$ e see front matter ª 2013 Elsev
http://dx.doi.org/10.1016/j.cose.2013.02.002
a b s t r a c t

As smartphones are becoming more complex and powerful to provide better functional-

ities, concerns are increasing regarding security threats against their users. Since smart-

phones use a software architecture similar to PCs, they are vulnerable to the same classes

of security risks. Unfortunately, smartphones are constrained by their limited resources

that prevent the integration of advanced security monitoring solutions that work with

traditional PCs. We propose Secloud, a cloud-based security solution for smartphone

devices. Secloud emulates a registered smartphone device inside a designated cloud and

keeps it synchronized by continuously passing the device inputs and network connections

to the cloud. This allows Secloud to perform a resource-intensive security analysis on the

emulated replica that would otherwise be infeasible to run on the device itself. We

demonstrate the practical feasibility of Secloud through a prototype for Android devices

and illustrate its resource effectiveness by comparing it with on-device solutions.

ª 2013 Elsevier Ltd. All rights reserved.
1. Introduction various types of smartphone malware such as viruses and
Smartphone devices are rapidly increasing their popularity by

offering advanced computing and connectivity functional-

ities. In contrary to traditional mobile phones, smartphones

allow users to run a diverse set of third-party software appli-

cations. As an evidence to the massive popularity of smart-

phones, a recent study by ComScore Inc. indicates that over

110million people in the United States owned smartphones in

2012 (C. reports June 2012). This represents a 47% share of the

total number of mobile communication devices sold and

continues to grow (C. reports June 2012).

The increasing popularity of smartphones has attracted

cyber criminals to this area as well. This has given birth to
S. Zonouz), ahouman2@il
. Sanders).

S, et al., Secloud: A clou
3), http://dx.doi.org/10.1

ier Ltd. All rights reserved
trojans. One can broadly classify smartphone malware into

two main groups. The first group are smartphone-specific mal-

ware that are designed to leverage the unique software and

hardware capabilities of smartphones. For instance, Cabir

(Library) is a smartphone-specific worm that spreads through

the Bluetooth interface of smartphones. As another example,

a recent study (Schlegel et al., 2011) builds a proof-of-concept,

smartphone-specific trojan that uses voice-recognition algo-

rithms to steal sensitive information being spoken by a user.

The second category of smartphone malware are generic

malware that are designed to work on a wide range of

computing devices including computers, smartphones, and

tablets. Phishing attacks (Dhamija et al., 2006) are examples of
linois.edu (A. Houmansadr), rgb@illinois.edu (R. Berthier), nikita@

d-based comprehensive and lightweight security solution for
016/j.cose.2013.02.002

.

mailto:s.zonouz@miami.edu
mailto:ahouman2@illinois.edu
mailto:rgb@illinois.edu
mailto:nikita@illinois.edu
mailto:nikita@illinois.edu
mailto:whs@illinois.edu
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2013.02.002
http://dx.doi.org/10.1016/j.cose.2013.02.002
http://dx.doi.org/10.1016/j.cose.2013.02.002

2 As discussed later, to guarantee that the user gets aware of the

c om p u t e r s & s e c u r i t y x x x (2 0 1 3) 1e1 32
generic intrusions that intend to steal a user’s logging cre-

dentials to a website (e.g., an online banking account) by

mimicking the appearance of that website. In addition to

invading the privacy and security of smartphone users,

smartphone malware can also form botnets that are capable

of performing large-scale, coordinated attacks on communi-

cation infrastructures (Apvrille, 2010).

A key challenge in building effective smartphone security

solutions is the resource limitation of smartphones. Existing

security solutions for smartphones consume much resources

for their operation, such as memory, storage, CPU, and bat-

tery; this compromises their usability and encourages their

users to avoid such solutions. Indeed, to be effective, a secu-

rity solution needs to keep a comprehensive database of

malware signatures, requiring a large storage from the phone

device. Also, any suspicious behavior needs to get correlated

against a large list of stored signatures, consuming high pro-

cessing and memory resources from the resource-limited

smartphone devices. Additionally to protect users against

zero-day threats, many suggest to combine different security

solutions, which is not feasible for on-device deployment

considering the smartphones’ limited resources (Oberheide

et al., 2008a). As an example of high resource utilization in

smartphone security solutions, SMobile VirusGuard,1 a pop-

ular antivirus solution for Android phones, takes 40 min and

consumes 10% of the battery charge to scan a 200MB folder on

a typical Android phone (Zhao et al., 2010). To conserve re-

sources, some solutions run a lightweight process on the

smartphone device (Miettinen and Halonen, 2006; Boukerche

and Notare, 2002; Yap and Ewe, 2005); this, however, affects

the effectiveness and accuracy of such solutions significantly

in protecting the devices against security threats (Biever,

2005). Alternatively, some solutions move the resource-

intensive security analysis from the device to a network en-

tity (Guo et al., 2004; Cheng et al., 2007) or inside a cloud

(Oberheide et al., 2008b; Portokalidis et al., 2010). Due to their

limited interaction with the device, such solutions have

limited capabilities in performing security analysis. For

instance, the cloud-based approach of Oberheide et al. (2008b)

extensively analyzes a device’s files inside a cloud to identify

possible corruptions, yet, it is not able to identify in-memory

exploitations.

In this paper, we build on our previous preliminary work

(Houmansadr et al., 2011) and propose and implement

Secloud, a comprehensive security solution for smartphones.

Secloud emulates a smartphone device inside the cloud and

runs various powerful (hence, resource-intensive) security

analysis on the emulated replica, in parallel, in order to pro-

tect and assess the security of the actual device. Moving the

resource-intensive analyses to the cloud enables Secloud to

provide powerful protection against intrusions without

exhausting the smartphone’s limited resources. More specif-

ically, Secloud emulates a registered smartphone in a virtual

machine running in the cloud and mirrors all of the device’s

inputs and communications to the emulated environment to

keep the emulated version synchronized with the actual de-

vice. This provides real-time and powerful security analysis
1 http://www.smobilesystems.com/wp-content/themes/new_
smobile/datasheets/SMobile_VirusGuard_2010.pdf.

Please cite this article in press as: Zonouz S, et al., Secloud: A clou
smartphones, Computers & Security (2013), http://dx.doi.org/10.1
capabilities while consuming low resources on the device it-

self. The real-time emulation on powerful servers (inside the

cloud) allows Secloud to instrument the emulated environ-

ment with a rich set of off-the-shelf intrusion forensics and

detection solutions that do not have to be lightweight, and

perform run-time in-depth detection analyses. Once a secu-

rity compromise is detected within the emulated environ-

ment, Secloud instructs its lightweight agent running on the

device to take the required actions, e.g., to remove an infected

file or to close an attacker’s network connection.2

We have implemented a working prototype of the Secloud

framework for Android smartphone devices. We instru-

mented Secloud on an actual smartphone device and evalu-

ated its security performance against several real attacks such

as the Rageagainsthecage (Rageagainsthecage, 2010) exploit,

a powerfulmalware that is known to have infected over 50,000

devices. We also measured the resource utilization of

Secloud’s agent on the device and compared the results with

other security solutions with similar objectives. Our results

show that Secloud uses little resources on the device, while

performing comprehensive and complicated security ana-

lyses by running heavyweight analyses on the emulated de-

vice inside the cloud.
1.1. Paper’s scope

In this paper we are only interested in security threats against

smartphone devices, but not those that target the underlying

infrastructures such as cellular networks. We assume that

typical security measures are deployed to secure the cloud

environment and the Internet communications between

Secloud entities. Additionally, while our cloud-based security

solution can be extended to detect any kind of smartphone

malware, the Secloud prototype presented in this paper only

implements PC-based malware detectors such as anti-viruses

and intrusion detectors. For instance, a more advanced

version of Secloud would be able to detect malware that make

physical damages to the device by emulating and monitoring

the hardware behavior in the cloud.We leave such extensions

as our future work plan.
1.2. Contributions

In summary, wemake the followingmain contributions: 1) we

design Secloud, a generic framework for smartphone security

that can be used to perform various powerful intrusion anal-

ysis solutions, while imposing little resource utilization on the

device. 2) We prototype a working implementation of Secloud

for Android smartphone devices andmeasure and evaluate its

performance and accuracy on a real-world testbed.

The rest of this paper is organized as follows. In Section 2,

we give an overview of the Secloud architecture. Sections 3e5

describe the three main components of Secloud, mentioning

different security solutions deployed by Secloud in our imple-

mentations. In Section 6, we suggest and compare two
intrusion, Secloud makes use of other secure channels to notify
the user such as sending an email to an account that is not logged
in on the device.

d-based comprehensive and lightweight security solution for
016/j.cose.2013.02.002

http://www.smobilesystems.com/wp-content/themes/new_smobile/datasheets/SMobile_VirusGuard_2010.pdf
http://www.smobilesystems.com/wp-content/themes/new_smobile/datasheets/SMobile_VirusGuard_2010.pdf
http://dx.doi.org/10.1016/j.cose.2013.02.002
http://dx.doi.org/10.1016/j.cose.2013.02.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 3) 1e1 3 3
deployment scenarios for Secloud, and in Section 7,wediscuss

several issues and challenges regarding the Secloud’s real-

world deployment, along with their corresponding potential

solutions. We present the evaluation results of the Secloud

prototype implementation in Section 8. Section 9 mentions

some related work, and we conclude the paper in Section 10.
2. Secloud’s architecture overview

Fig. 1 shows the high-level architecture of Secloud’s frame-

work. Secloud is composed of three main components: a client

agent running on smartphone devices, an emulator that runs

replicas of registered smartphones in the cloud, and a proxy

server that mirrors network traffic between the registered

smartphones and the emulated replicas.

The client agent is a software that is installed on the

smartphone device once the device gets registered to Secloud.

Theagent is composedof a lightweightmobile application, and

a kernel module that provide permissions and access to low

level sensor inputs.Theclientagentperformsthreemaintasks:

1) it collects user andsensor inputs fromthedevice’s interfaces

and sends them to the Secloud’s emulator; 2) it modifies the

network settings of the device to use Secloud’s proxy for its

network communications; and, 3) it listens for notifications

from the emulator and performs the requested actions.

Each emulator resides in a cloud environment and runs an

emulated replica of each device registered to Secloud.

Emulated replicas contain the exact file systems and oper-

ating state of their corresponding devices and are continu-

ously kept synchronized with them. The emulation

environment runs several off-the-shelf security solutions in

parallel in order to analyze the security state of the replicas. It

is important to note that such a comprehensive security so-

lution can not be deployed directly on the device due to the
Fig. 1 e Secloud’s high

Please cite this article in press as: Zonouz S, et al., Secloud: A clou
smartphones, Computers & Security (2013), http://dx.doi.org/10.1
limitations of processing, memory, storage and battery re-

sources. Furthermore, periodic snapshots are taken in the

cloud to provide recovery capability if needed. Once a misbe-

havior is detected, the emulator sends a notification to the

corresponding client agent to take the required actions.

Finally, the third component of Secloud is a proxy server

that mirrors Internet communications of registered devices

and sends them to the emulated replicas running inside the

cloud.We note that the proxy’s operation does not disrupt the

usual Internet activity of the client. Outgoing traffic from the

replica can either be discarded of buffered to enable compar-

ison with outgoing traffic from the device.

As mentioned above, all of the registered smartphones’

interactions with the outside world (e.g., user inputs, sensor

inputs, and Internet communications) are sent to the

emulated replica of that device. Starting from a synchronized

state, the architecture maintains synchronization of the de-

vice and its replica that is required to perform in-the-cloud

accurate security analyses in real-time. In Section 7, we

discuss possible inconsistencies between a Secloud device

and its replica and describe how Secloud minimizes their ef-

fects on the security incident analysis results.
3. Client agent

The Secloud agent is a lightweight software that runs on the

smartphones registered to use Secloud service. The agent

captures and logs all the information that are required to fully

duplicate the registered device within the emulation envi-

ronment in real-time. A straightforward solution to achieve

this objective is to take an approach similar to the replay

mechanism in ReVirt (Dunlap et al., 2002), in which the agent

logs all inputs to the device, such as network incoming traffic

and physical sensor and keyboard inputs. Replaying “all” the
-level architecture.

d-based comprehensive and lightweight security solution for
016/j.cose.2013.02.002

http://dx.doi.org/10.1016/j.cose.2013.02.002
http://dx.doi.org/10.1016/j.cose.2013.02.002

Input Core

Drivers

Handlers

Intercepting Agent

Injecting Agent

Fig. 2 e The modified linux input subsystem.

c om p u t e r s & s e c u r i t y x x x (2 0 1 3) 1e1 34
inputs enables an accurate replay with no need to periodically

run consistency checks between the device and the emulator.

However, this approach is resource-intensive and results in a

high volume of overhead traffic being generated by the device.

To lower the bandwidth consumption, we take an alter-

native approach where the Secloud agent logs only device

inputs and sends them to the emulator to be replayed. Since

most Internet services, e.g., webpages, have deterministic ef-

fects on the state of the device, the device and the emulator

receive the same responses from remote servers in response

to similar requests. For instance, if a smartphone user un-

knowingly clicks on a link to download amalware, the clicking

event on the device would be logged, sent to the emulator and

replayed in the emulator, resulting in the same malware

download in the emulation environment.

To capture the physical inputs, the Secloud agent intercepts

them at the kernel level, right after they have been received

from the hardware by drivers. This implementation choice is

basedon the following reasoning. First, input interception from

layersabove thekernel, e.g., fromtheapplication layer, requires

application-specific knowledge and should be implemented for

each application separately. Second, a single hardware event

might affect several applications; therefore, kernel-level input

interception prevents such redundant application-level event

loggings. Finally, the input interceptionmodule needs to be in a

trusted domain as the reports should be trusted by the emula-

tion environment. We note that the kernel-level interception

module is the last possible target for an attack after the other

security layers have been compromised.

3.1. Implementation

We implement Secloud agent software for Android smart-

phone devices. In particular, the agent modifies the input

subsystem of Android OS to capture and log physical inputs.

The input subsystem’s main responsibility is to manage

various input devices, such as the keyboard and pointer, that

one uses to interact with the phone. These input devices are

usually accessed through special hardware interfaces. Using

the input subsystem, the kernel exposes the user input to the

user space. The input subsystem has threemain components,

as depicted in Fig. 2: 1) the hardware drivers; 2) the input_-

core subsystem that interacts with the low-level hardware

drivers, andmanages the interconnections among drivers and

handlers; and 3) the evdev event handlers that provides an

interface to the user space.

Secloud’s intercepting agent on the device captures the

physical inputs once they have been processed by the drivers

and are ready to be passed to the handlers (see Fig. 2). The

agent captures each event as an array of parameter values.

The first field is a timestamp storing the time when the event

occurred. As we will discuss later, the absolute timestamp

values are not crucial, because Secloud uses event time only to

maintain the inter-event interval consistency while replaying

the events. The second field is the type, which shows the

generic type of the event being reported, such as a key press,

button press, or relative motion. The last two fields store the

event code and the event value. The code field determines

which of the various buttons or axes are being manipulated,

while the value field stores what the state or motion is. For
Please cite this article in press as: Zonouz S, et al., Secloud: A clou
smartphones, Computers & Security (2013), http://dx.doi.org/10.1
example, if the type is a key or button, the code saves which

key or button it is, and the logged value declares whether the

button has been pressed or released.

If continuous network availability (e.g., a data plan) is pro-

vided, once the Android OS on the device has booted up,

Secloud’s intercepting agent initiates a kernel-level socket that

connects totheemulationenvironment.Thesocket is laterused

to send all the logged events in real-time to the emulator, while

the device is actually used by the client. Within the emulator,

Secloud’s injecting agent receives the events and passes them

to the event handlers preserving the logged events’ orders and

timings. The real-time capture and forward approachmakes it

harder for attackers to disable or corrupt the agent’s reporting

capability before the logs of malicious events have been sent

and replayed in theemulator. If there isno Internet connectivity

on thesmartphonedevice, the logsarestoredon thephone’s SD

card and are sent later to the emulation environment once the

device is connected to the network (e.g., through WiFi or USB

connection to a PC). In this case, to ensure that logs’ integrity is

not compromised, Secloud makes use of hash function chains

before storing the logged events. In particular, to store the

sequence of events e1, e2,., Secloud stores the following (event,

hashed_value) pair sequence: ðe1;hðe1jj0ÞÞ; ðe2;hðe2jje1ÞÞ;/where

hðijjjÞ is a cryptographic one-way hash function on the concat-

enated string composed of i and j. We note that while the

hashing process prevents an attacker from tampering with the

logs, an attacker could still erase the logs to hide malicious ac-

tivities. Note that the capture-and-forward approach in real-

time partially addresses this issue, because the transition

from secure to insecure state would still leave traces in the logs

before the malicious deletion of events occurs. Another barrier

that we plan to implement as future work is a local heartbeat

between the kernel agent and the log storage to periodically

check that no log has been deleted.

To save network or storage resources on the device, the

agent compresses data before they are sent or stored. In

particular, we use the Run-Length Encoding (RLE), which is a

lossless data compression algorithm. RLE is very suitable for

compression of event reports on the device, since in practice,

several subsequent events’ parameters on the device usually

are of the same value, i.e., the type field. Furthermore, being a

very efficient algorithm, RLE does not cause much perfor-

mance overhead.
d-based comprehensive and lightweight security solution for
016/j.cose.2013.02.002

http://dx.doi.org/10.1016/j.cose.2013.02.002
http://dx.doi.org/10.1016/j.cose.2013.02.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 3) 1e1 3 5
4. Secloud’s emulator

The emulation environment of Secloud hosts the smartphone

replicas. The emulation environment also hosts different se-

curity solutions such as virus scanners and intrusiondetectors

that run in paralel over the replicas corresponding to different

actual devices.Anemulated replica is kept synchronizedwith its

corresponding smartphone device; this is done through

receiving the user inputs from the corresponding client agent.

We say that a device and its replica are synchronized if they

both have the same OS configuration, the same file system

(hence, the same installed applications), and the same set of

running applications. Since the user inputs to the actual device

are also replicated in the emulated replica, the replica is ex-

pected to remain synched with the device if it boots from a

synchronized state. However, the device and its replicamay go

out of synchronization occasionally for different reasons such

as a security compromise or software failures. To detect dy-

synchronizations, the emulator frequently checks the hash of

the file system and tries to re-synchronize the replica by

communicatingwith thedevice’suseragent.Theemulator can

also notify the owner, as described in Section 4.2, if the re-

synchronization is failed due to a security compromise.

We have implemented the reception and replay of user

inputs using the same kernel agent described in the previous

section. A set-bit in the agent configuration file tells the agent

to whether run in the collectionmode or the injectionmode. In the

collection mode, Secloud event logging engine, intercepts and

logs all inputs to the device. In the injectionmode, intercepted

events are collected by a network socket and written to the

Android input subsystem as if it were a new driver. The

timestamps on each event are used to delay the injection and

maintain a consistent inter-event interval. This allows

Secloud to reproduce an accurate user behavior on the replica

and to reduce the chances of the replica going into a state

inconsistent with the cell phone device.

Unlike an actual device, the emulation environment is not

resource-limited, and hence can be used to deploy multiple

security solutions concurrently to monitor smartphone rep-

licas for various types of compromises. Furthermore,

Secloud’s architecture enables out-of-the-box security solu-

tions, e.g., virtual machine introspection, which could not be

tampered with by the attackers once the device or replica has

been compromised. Indeed, to improve the overall detection

accuracy, Secloud makes use of several off-the-shelf IDSes,

which we review in the following sections.
3 http://www.clamav.net/lang/en/.
4 http://unyaffs.googlecode.com/files/unyaffs.
4.1. Security analysis deployed by the emulator

To achieve the highest protection, Secloud employs different

host-based and network-based security solutions on the

emulated smartphones inside the cloud, as described in the

following.

4.1.1. Virus scanning
Secloud uses antivirus solutions to recursivelymonitor all files

on thedevice inorder tofindknownmalware, suchasvirusesor

Trojans, using a traditional pattern-matching technique. Un-

like cell phone-specific antivirus solutions, which consider
Please cite this article in press as: Zonouz S, et al., Secloud: A clou
smartphones, Computers & Security (2013), http://dx.doi.org/10.1
resource limitation of such devices, cloud-based emulation al-

lows Secloud to run powerful antivirus tools with high-

frequency file system check ups. In our prototype, Secloud

employs theClamAV3 tool,which uses an extensive databaseof

malware signatures (currently 846 K signatures) as well as sig-

natures for safe Internet browsing (currently 763 K signatures).

Secloud periodically mounts the smartphone’s different im-

ages, suchas/systemand/sdcard,usingUbuntu’sbuilt-inmount

command and the open-source unyaffs24 utility. An advan-

tage of performing out-of-the-box file system checking is to

prevent attackers from being able to tamper with the antivirus.

4.1.2. File integrity checking
When a system is compromised, the attacker may modify or

read sensitive parts of the file system to keep the doors open

for future access to the device, or to evade detection. A file

integrity checker can check for modifications of important

files by generating a digest of those files, e.g., using crypto-

graphic hash functions, and by periodically checking the files

to validate their integrity. Due to high resource consumption,

it is impractical to run a file integrity checker on smartphone

devices. Secloud does not have that limitation and is config-

ured to run the Samhain file integrity checker (Wotring et al.,

2005) on the mounted file system images every 20 s.

4.1.3. System-call monitoring
Virus downloads and file modifications usually happen before

or after the device is compromised. More specifically, a user

might get tricked into downloading a malware, resulting in a

compromise, or the attacker may download malware after

compromising the device. To detect vulnerability exploita-

tions while they occur, we have modified the Android kernel

on the replica to record syscalls while the emulator is oper-

ating. The logs are sent out of the emulator in real-time so that

a syscall-based detection solution (Forrest et al., 2008) can

monitor for signatures, i.e., illegitimate syscall traces that

represent malicious activities. For instance, the well-known

rageagainstthecage Android malware (Rageagainsthecage,

2010) forks more than a thousand processes (calling the fork

syscalls) within a few seconds to bypass permission protec-

tion and to gain root access on the device.

4.1.4. Network intrusion detection and response
Cloud-based emulation also enables Secloud to do in-depth

packet inspection on incoming and outgoing network traffic.

This helps to monitor the device for malformed payloads and

anomalous behaviors such as network scanning and botnet

behavior. In our implementation, Secloud uses the Snort

(Roesch, 1999) network-based IDS, which stores its signature

database in the cloud environment and inspects egress and

ingress traffic of the emulated replicas.

If Secloud is deployed as a subscription-based service, it is

very likely to monitor several instances from each smart-

phone model. This enables cooperative intrusion detection

operations to identify widely spread threats. For example,

smartphone viruses propagating from one device to the other

would allow Secloud to identify the same anomalous behavior
d-based comprehensive and lightweight security solution for
016/j.cose.2013.02.002

http://www.clamav.net/lang/en/
http://unyaffs.googlecode.com/files/unyaffs
http://dx.doi.org/10.1016/j.cose.2013.02.002
http://dx.doi.org/10.1016/j.cose.2013.02.002

Table 1 e A sample list of response and prevention
actions performed by a client agent.

Incident Response actions

c om p u t e r s & s e c u r i t y x x x (2 0 1 3) 1e1 36
on many devices in a short period of time. As a future work,

we plan to investigate how to correlate IDS alerts from

different device samples in the cloud to reduce the overall

false positive and false negative rates.

Malformed incoming

packet detection

Restore clean system.img anduser-

data.img images, and reboot the

smartphone device

Network-based device

misbehavior detection

Terminate the connection and

quarantine the application which

receives the packet

Virus/Malware detection

on/data directory

Remove the file and block the

communication with the downloaded

site

Virus/Malware detection

on/system directory

Restore a past clean system.img

snapshot and block the downloaded

site

Misbehaving application-

level process

Kill the process or terminate the

corresponding service and uninstall

the application

Misbehaving root-level

process

Kill the process, restore the

system.img image and reboot the

smartphone device
4.2. User notification

Once a security threat is detected by the emulator’s security

solutions, the corresponding device should be notified to take

the required actions. We suggest the following mechanisms:

4.2.1. Informing Secloud’s client agent
The immediate way for notifying the user is to send amessage

to the Secloud client agent running on the corresponding de-

vice. The Secloud client agent can notify the user through a

pop-up message about the detected security threat. Also, the

emulator can command the Secloud client agent to perform

certain actions to mitigate the detected compromise, e.g., to

delete some files or replace them with a previous version.

4.2.2. Email notification
To backup the previous mechanism, i.e., in case the client

agent is compromised or disabled, the Secloud emulator can

use other channels to respond to a detected threat. In partic-

ular, the emulator can send an email through a secure

external service, e.g., Gmail, to the client. As an alternative

mechanism, each user can setup an emergency contact list

with the Secloud system, which get contacted once a

compromise is detected. As another alternative, Secloud can

directly notify the mobile service provider of the infected de-

vice. The service provider can analyze the Secloud reports

from different smartphones in order to detect fast-spreading

viruses or worms.
5 https://www.virtualbox.org/.
4.3. Response and prevention

Once the client agent is notified about an identified compro-

mise, an appropriate action needs to be taken to mitigate the

compromise and to restore the device to its secure state. The

following summarizes the response and recovery actions

taken by a Secloud client agent.

4.3.1. File removal
The emulator can instruct the corresponding client agent to

remove detected infected files, or malicious applications.

4.3.2. Process termination
In case the malicious executable is successfully launched as

an application/process on the device, the emulator can

instruct the corresponding client agent to kill themisbehaving

process.

4.3.3. Periodic backups
The Secloud emulator can periodically backup the emulated

replica, which can be used to restore the device in case of

malicious corruptions. In fact, performing this backup does

not impose any additional network communication to the

device, which is the case in traditional smartphone backup

services.
Please cite this article in press as: Zonouz S, et al., Secloud: A clou
smartphones, Computers & Security (2013), http://dx.doi.org/10.1
4.3.4. Network filtering
The file removal and process termination mechanisms

mentioned above help in stopping an occurred compromise.

In order to prevent known compromises, the emulator can

instruct the client agent to terminate some network connec-

tions that have malicious patterns.

4.3.5. Device quarantining
By receiving frequent Secloud reports for a device within a

short period of time, the service provider can temporarily

quarantine the device by blocking its network communication

to prevent spreading of the compromise to other devices, until

the compromised device is restored to a secure state.

In our current implementation, all the mentioned response

and prevention mechanisms have been implemented, except

for the device quarantining, which needs to be deployed by a

service provider. In particular, the periodic backups inside the

cloud are implemented by taking periodic snapshots of the vir-

tual machines running the emulated replicas. In our imple-

mentation, we used VirtualBox5 as a virtualization solution.

Table 1 shows a list of the actions taken by the client agent, as

instructed by the Secloud emulator. In particular, we can see

that different actions are taken for malicious files detected in-

side/data and/system directories. This is because during the

normal usage, the/data directory gets updated with high fre-

quencies, i.e.,higher thanthesnapshot frequencies, sorestoring

to a previous snapshot may lead to data inconsistencies.
5. Secloud’s proxy

The third component of Secloud is a proxy server that dupli-

cates a device’s incoming traffic to their corresponding

emulated replica inside the Secloud cloud. It also blocks the

replica’s outgoing traffic to avoid request duplication from the

point of view of third parties (e.g., to avoid double-purchasing

an item from an online shopping Website).
d-based comprehensive and lightweight security solution for
016/j.cose.2013.02.002

https://www.virtualbox.org/
http://dx.doi.org/10.1016/j.cose.2013.02.002
http://dx.doi.org/10.1016/j.cose.2013.02.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 3) 1e1 3 7
As mentioned before, the client agent installed on the

smartphone configures the device to use the dedicated proxy

for its Internet traffic. Rather than a traditional HTTP proxy,

we opted to use a SOCKS proxy (Leech et al., Apr. 1996) to

enable the client agent to proxy any type of IP traffic.

We note that an alternative solution to deploy the proxy in

the cloud is to leverage the cellular service providers. In other

words, a service provider can forward all of the traffic of a

registered user through its cellular network to the emulation

environmentofSecloud.Thisapproacheliminates theneed for

proxy settings in the registered devices and reduce the latency

added due to proxying the Internet traffic. However, deploying

this by a service provider may be a more expensive solution.

Moreover, this approach has to fall back to the first option of a

client-connected proxy when the device switches from using

the carrier network to a traditional WiFi connection.

Finally, it is important to mention that a smartphone can

have communication channels other than the carrier’s

cellular network and WiFi connections, e.g., infrared and the

Bluetooth interfaces. Since these connections are local and

out of reach for the proxy, the client agent is designed to

capture them and send them directly to the Secloud emulator.

Note that these type of connections occur much less

frequently than the cellular andWiFi communications, hence

they do not impose large traffic loads to the device.
6. Deployment scenarios

We suggest two different deployment scenarios for Secloud.

A) Personal deployment. An individual can deploy a personal

Secloud system to protect her/his smartphones. To do this,

one needs to run the Secloud emulator on a computer

machine, which could be a personal computer or a leased

cloud server. She also has to deploy the Secloud proxy on

the same machine that runs the emulator. For any

smartphone device that needs to be protected by this

personal Secloud system, the user should install the

Secloud client agent on the device and to configure it to use

the personal Secloud emulator and proxy.

B) Commercial deployment. In this scenario, the Secloud system

is deployed and maintained by a third-party, e.g., a for-

profit company. The company runs Secloud emulators on

a server farm. The company also runs proxy server(s) that

duplicate the traffic of the users to the emulator. Smart-

phone users can subscribe to this service, e.g., by paying a

monthly fee, and use the service by installing the client

agent provided by the company. Such commercial

deployment can be either performed by cellular service

providers or by companies that target users across

different service providers.
6 aws.amazon.com/ec2/.
7 http://code.google.com/android/backup/index.html.
8 https://www.icloud.com.
9 www.dropbox.com/.
6.1. Comparison

The personal approach provides the maximum privacy pro-

tection to the users but is likelymore expensive compared to a

large-scale commercial deployment. Also, a personal deploy-

ment should be performed by someone with the required
Please cite this article in press as: Zonouz S, et al., Secloud: A clou
smartphones, Computers & Security (2013), http://dx.doi.org/10.1
technical expertise to install and maintain the system. On the

other hand, the commercial deployment can cut the cost of

maintaining the system and purchasing security solutions for

the users by distributing expenses and efforts among many

users. Also, the third-party deployment would be more suit-

able for users with minimum technical knowledge.
7. Discussions

In this section, we discuss current limitations and potential

solutions regarding practical deployment of the Secloud

framework.

7.1. File-system consistency

Even though, in the Secloud framework, all the inputs to the

smartphone device are replayed in the emulation environ-

ment, the file system on the device and the replica could

possibly go out of synchronization for various reasons, such as

accidental transient hardware or OS errors. To solve that

problem, the Secloud’s agent periodically (e.g., once per day,

when the phone is getting recharged) computes hashed values

of folders on the device and sends them to the emulator for

comparison. In the case of a mismatch, Secloud notifies the

client that a resynchronization is needed.

Tominimize the amount of data being transferred from the

device to the emulator during a resynchronization process,

Secloud follows a recursive hierarchical integrity check so that

only mismatched files are uploaded. The algorithm works as

follows: starting from the root directory/on the device, the

Secloud’s agent computes and sends the hashed value of the

whole folder for comparison. If a mismatch is detected, the

agent proceeds to check subdirectories recursively until the

source of the inconsistency is found. Then the current copy of

the file(s) or folder(s) is sent from the device and replaces its

existing version, if there is any, on the emulator. Once the

device and the emulator have been synchronized, Secloud

reboots both entities to make sure their memory images are

also at the same state.

7.2. User privacy

As discussed before, user input and data stored on the device

are sent to the emulator to keep the replica in the cloud well-

synchronized. For a personal deployment of Secloud, this has

limited privacy concerns since the emulator is owned and

moderated by the smartphone owner. However, in the case of

a commercial deployment, users may be concerned about the

privacy of their personal information being sent to a third-

party controlled emulator. In fact, this is a common problem

withmany Internet services, like the Amazon EC26 computing

cloud service or online data backup service including Google

Android backup,7 Apple iCloud,8 or Dropbox.9 The core idea

behind the operation of those services is a tradeoff between
d-based comprehensive and lightweight security solution for
016/j.cose.2013.02.002

http://aws.amazon.com/ec2/
http://code.google.com/android/backup/index.html
https://www.icloud.com
http://www.dropbox.com/
http://dx.doi.org/10.1016/j.cose.2013.02.002
http://dx.doi.org/10.1016/j.cose.2013.02.002
User1
Highlight

10 Our solution will be applicable to all of the recent Android
smartphone models, because Secloud enhances the Linux ker-
nel’s input subsystem that is used in recent Android operating
systems.

c om p u t e r s & s e c u r i t y x x x (2 0 1 3) 1e1 38
usability and security. If the benefits offered by those services

meet a certain level of trust, then users will adopt the solution

because the service offers strong security protection and the

likelihood of a privacy breach is acceptably low, given the

adequate privacy policy agreement and security insurance

offered by service providers. We believe that Secloud fall in

the same category. As an example, a company maintaining a

large volume of cell phones for their employees would find the

security features of Secloud attractive in order to outsource

intrusion detection and keep devices protected at a reduced

cost, even if this means sending data to the cloud. Of course,

this does not mean that less scrutinity should be applied on

the security of the architecture.

Additionally, users can be given the option to choose spe-

cific applications to be monitored or not by Secloud. For

example, a client may choose to have only newly installed

applications monitored, but leave a trusted set of applications

that deal with sensitive information (e.g., financial account

management applications) out of the replication process.

7.3. Environment resiliency

Leveraging an emulation environment to detect security is-

sues involves the risk of missing malware crafted to change

their behavior under emulated environments. Few years ago,

a study showed that 4% of malware targeting PCs included

instructions to detect emulated environments and to change

their behavior accordingly (Chen et al., 2008). In the context of

our study, a malware that intends to infect the cell phone

device and to remain invisible to the replica running in the

cloud would likely cause the device and the replica to become

unsynchronized. To keep the illusion of the replica and the

device being synchronized, the malware would have to suc-

ceed in infecting the client agent at the kernel level. While

possible, the Secloud architecture makes this type of attack

significantly more complex and expensive for adversaries.

7.4. Encryption

Some smartphone applications use encryption in their

Internet communications, e.g., a web browser connecting to

an HTTPS destination. In order for the Secloud emulator to be

able to analyze an encrypted connection, a Secloud replica

should obtain the appropriate encryption credentials used by

its corresponding Secloud device. For this, we have the

Secloud agent to send all the credentials for encrypted traffic

to the emulated replica, to be able to decrypt and analyze the

corresponding encrypted traffic. An alternative solution

would be to deploy this at the application-level on the device,

by having an application that uses encrypted connections,

e.g., a web browser, to send a decrypted version of its

encrypted traffic to the emulator. Our measurements show

that a small fraction of a typical smartphone’s Internet con-

nections are encrypted, so this increases the utilized band-

width by the device only slightly.

7.5. Attack evasions

One way to defeat Secloud is to replace the device drivers and

then fool the on-device agent with malware that inaccurately
Please cite this article in press as: Zonouz S, et al., Secloud: A clou
smartphones, Computers & Security (2013), http://dx.doi.org/10.1
reports hash values of the file system. Themobile device could

then host spyware while spoofing the cloud into thinking that

no changes have beenmade. In order to get root-level privilege

and get access to device drivers for replacing them, the

attacker would need to go through several adversarial steps,

such as vulnerability exploitations and heavy system modifi-

cations.We assume that starting from a clean state, the cloud-

based solution, which instruments the emulator with many

monitoring solutions, will identify at least one of those steps,

and consequently, Secloud may decide not to trust the on-

device agent anymore depending on the detected security

incident. This is why Secloud also uses a backup email noti-

fication system towarn users of an intrusion even if the device

no longer respond to instructions given by the monitoring

solutions in the cloud.
8. Evaluation

The goal of this section is to validate the Secloud approach

under realistic conditions. More specifically, we study the

following three questions: 1) can known and unknown threats

be detected by this approach with better accuracy than that of

traditional cell phone security solutions? 2) How much

computational and memory resources are saved by this

approach, and how much network bandwidth is required? 3)

Finally, what would be the cost to deploy this approach at

large scale using current commercial cloud services? We

address those three questions through empirical experiments

in the following subsections.

For the experiments, we emulated the Motorola Droid

smartphone with a 16 GB SD card using a virtual machine in

the cloud. In particular, the virtual machine used an Intel i7

CPU 3.07 GHz, and 3.0 GB of the system’s memory. The oper-

ating system is a 64-bit Ubuntu with the Linux 2.6.32 kernel.

We built the Android’s phone emulator directly from the An-

droid’s kernel source code (version 1.510). In the experiments,

we found that each emulator instance took (on average)

210 MHz of CPU and 240 MB of the VM’s memory.
8.1. Accuracy

To evaluate the detection capabilities of Secloud, we repli-

cated the DroidDream malware that spread through 50

Android applications before being remotely blocked by Google

in March 2011 (Perez). DroidDream works by hijacking legiti-

mate applications to gain root access on cell phones and to

run malicious payloads. We chose to develop the experi-

mental malware by infecting the Terminal Emulator appli-

cation (The Terminal-Emulator App, 2010), because it enables

us to easily perform a variety of illegitimate actions through a

set of shell scripts. From the two exploits embedded within

the DroidDream malware, we used the Rageagainstthecage

exploit (Rageagainsthecage, 2010). It exploits a vulnerability in

the Android Debug Bridge (ADB) process which is used to
d-based comprehensive and lightweight security solution for
016/j.cose.2013.02.002

http://dx.doi.org/10.1016/j.cose.2013.02.002
http://dx.doi.org/10.1016/j.cose.2013.02.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 3) 1e1 3 9
communicate with an emulator or device instance. Before

Android 2.3, this process did not check the return value of the

setuid and setgid function calls when dropping privileges after

being launched. The exploit forks itself enough times to

overflow the maximum number of ADB children. As a result,

any newADB process fails to drop privileges and remains root.

We also implemented additional exploits to represent

various attack consequences that are usually performed by

cell phone malware. The different attack scenarios are

described in the following list.

e Root Escalation: The root privilege domain on the de-

vice is compromised by the rogue application through the

Rageagainstthecage exploit.

e Anti-Virus (AV) Neutralization: The antivirus appli-

cation running on the cell phone is killed and removed

from the system.

e K-Malware Download: The attacker downloads a known

malicious application to/system on the device.

e U-Malware Download: The attacker downloads an un-

known malicious application to/system on the device.

e Data Exfiltration: The attacker scans the file systemand

parses the contact list to extract personal information.

e Premium SMS: The application secretly sends SMSes to a

premium rate number belonging to the attacker (Kirk).

e Contact Removal: All contacts from the contact list are

removed by the attacker.

e Agent Neutralization: The attacker modifies the rout-

ing table to disrupt communication between the Secloud

agent and the emulation environment.

Secloud enables monitoring of smartphones using a

comprehensive set of IDSes running in parallel. In our ex-

periments, none of the IDSes, except Zoner, were lightweight

enough to be run on the device, and hence had to be run in the

cloud. We measured how much the overall intrusion detec-

tion accuracy is affected as a result of Secloud’s deployment

compared to a traditional lightweight mobile antivirus appli-

cation. Table 2 shows a detailed comparison of the detection

capabilities of the traditional approaches and Secloud. The

rows are the attack scenarios detailed above, and each column

represents a specific sensor. In particular, the first column

shows the results for the popular Zoner Antivirus v1.0.5 for

Android devices, which successfully detected a downloaded

known exploit when it was scanning the SD card directory on
Table 2 e Intrusion detection accuracy comparison.

Zoner AV ClamAV

Root escalation � �
Binary replacement � �
K-malware download-1 O O

U-malware download-2 � �
Data exfiltration � �
Premium SMS � �
Removing contacts � �
AV neutralization � �

Please cite this article in press as: Zonouz S, et al., Secloud: A clou
smartphones, Computers & Security (2013), http://dx.doi.org/10.1
the device. In the cloud, the ClamAV antivirus detected the

same exploit by searching through the emulator’s mounted

SD card image. By monitoring the network traffic, Snort

identified the data transfer from the smartphone to the

known malicious end-point during the data exfiltration

attack. The root escalation was successfully detected by the

syscall-based behavioral detection system as it called the fork

system call 1042 times within a second that was marked by

the IDS as a misbehavior. Finally, Samhain, a file integrity

checker, triggered an alert when sensitive directories and files

were modified or accessed and also when a process got killed

or launched. As shown in the table, each attack vector in our

experiments was detected by a particular IDS, and hence by

Secloud. Facilitating deployment of all IDSes simultaneously

increases the detection capability of Secloud up to the union

of the individual IDSes. In summary, given the set of IDSes

that we had deployed, Secloud successfully detected all the

attack scenarios except the premium SMS attack, which was

not detected by any of the deployed IDSes in the cloud. We

note that this type of attack does not violate rules monitored

by the current set of IDSes, but it would be simple for Secloud

operators to add a new detector to cover this threat, without

any need to involve users.

8.2. Efficiency

In addition to the detection accuracy improvement, we eval-

uated the performance of our Secloud implementation, and

compared it to a conventional smartphone security solution.

In particular, wemeasured CPU usage, memory consumption,

network overhead, and battery usage. We used the adb tool to

connect to the device and emulator in order to periodically

read and log information stored in the/proc/stat and/proc/

meminfo directories. We also used the SystemPanel applica-

tion to log battery-related reports.

We first measured how much of the system resources a

typical smartphone antivirus tool, i.e., Zoner Antivirus, needs

while scanning the device for malware. We used the dex2jar

tool to reverse-engineer the Zoner application and extract the

Java source files. We found out that Zoner was matching the

files against a Java hashmap (Scanner.java), including only

61 virus signatures. In comparison, ClamAV holds a database

of 846 K signatures. For a single run, Fig. 3(a) illustrates de-

vice’s CPU utilization by the on-device Zoner Antivirus

(98.85%) and by Secloud (4.63%) when monitoring operations
Detection solutions

Snort Behavioral Samhain Secloud

� O � O

� � O O

� � O O

� � O O

O � � O

� � � 3

� � O O

� � O O

d-based comprehensive and lightweight security solution for
016/j.cose.2013.02.002

http://dx.doi.org/10.1016/j.cose.2013.02.002
http://dx.doi.org/10.1016/j.cose.2013.02.002

Fig. 3 e Performance analysis of a traditional intrusion detection technique.

c om p u t e r s & s e c u r i t y x x x (2 0 1 3) 1e1 310
are running in the cloud (Idle). It is worth highlighting that

during the Zoner scanning time, the usability of the device

was significantly affected due to Zoner’s high resource con-

sumption overhead (94.22%). Fig. 3(b) shows the memory

consumption of both cases. Running the antivirus solution on

the device increases thememory consumption from 59.97% to

86.03%, i.e., 26.06% overhead, on average.

This experiment led us to measure how much the phone’s

usability was affected as a result of the virus scan. Before

doing each experiment, we fully recharged the phone’s bat-

tery. Fig. 4(a) shows the time required to scan folders with

different sizes. As shown in the figure, for folders larger than

approximately 1.5 GB, the phone became unavailable for

about 1 min. A full SD card scan took 112 min to complete. For

Secloud, the full SD card check with ClamAV took about

29 min; however, the scanning was done in the cloud, and the

phone had no usability limitation during the scan. From a

usability point of view, it is also important that the security

solution does not consume much battery power of the mobile

phones. Fig. 4(b) shows how much battery drain each virus

scan causes. As shown in the figure, the battery drain does not

grow linearly with folder size. The full SD card scan consumed

about 40% of the fully charged battery and caused a 380 mV

drop (from 4117 to 3737 mV).

WealsoevaluatedhowmuchoverheadSecloudcauses inthe

emulationenvironment. Fig.5(a) showstheCPUutilization for1)

VM,when theoriginalvirtualmachine isup (10.96%onaverage);

2) Idle, when the virtual machine is running the emulator that

was idle (27.08% on average); and 3) IDS, when the emulator is

running and Secloud performs periodic security checks (every

15 s) using different IDS sensors (44.00% on average).

As shown in the graph, except during the security checking

intervals, the CPU utilization was fairly low, enabling the

concurrent running of several emulators within a single
Fig. 4 e Performance analysis of a tradit

Please cite this article in press as: Zonouz S, et al., Secloud: A clou
smartphones, Computers & Security (2013), http://dx.doi.org/10.1
virtual machine. Additionally, Fig. 5(b) shows the memory

consumption for the three cases mentioned above. Running

the idle emulator itself caused a 3.46%memory increase (from

35.93% to 39.39%), while the frequent security checks

increased the memory usage to 41.17%, i.e., by 1.78%.

Finally, we measured the network bandwidth consump-

tion by Secloud as it sends all physical inputs on the device to

its mirror in the cloud. Since the network overhead heavily

depends on the amount of physical inputs, we measured the

bandwidth consumption for the following four different usage

profiles representing typical smartphone usage profiles. Fig. 6

shows the results when the user 1) does not interact with the

phone; 2) browses the Web and reads the contact list; 3) types

a text message, and 4) plays a game with constant use of the

touch screen. As expected, the maximum network traffic is

transferred when the user heavily uses the touch interface,

since sliding a finger on the screen involves a large volume of

discrete events to simulate a continuous motion.

8.3. Feasibility

To be used in practice as a subscription-based service, Secloud

needs to be cost-efficient for the end customers. We did a

preliminary feasibility analysis to find out approximately how

much the emulation of each smartphone device would cost,

on average, if the cell phone carrier provider decided to use

the Amazon EC2 Cloud as the emulation platform. Assuming

that 10,000 smartphones intend to use the Secloud service, we

used Amazon’s monthly calculator to compute the costs for

each of their computing instance types. Each row in Table 3

shows the results for a specific instance type (which is

described by the second and third columns). The fourth col-

umn reports howmany emulator instances could be launched

on a single instance (virtual machine), and the fifth column
ional intrusion detection technique.

d-based comprehensive and lightweight security solution for
016/j.cose.2013.02.002

http://dx.doi.org/10.1016/j.cose.2013.02.002
http://dx.doi.org/10.1016/j.cose.2013.02.002

Fig. 5 e Performance analysis of Secloud.

c om p u t e r s & s e c u r i t y x x x (2 0 1 3) 1e1 3 11
shows the required number of instances to support service to

10,000 smartphones. The total costs for instance types are

shown in the last column.
9. Related work

Computer intrusions, such as viruses, have been impacting

end users and system operators for over two decades (Porras

et al., 2010) and numerous solutions for detection and de-

fense have been proposed (Kim and Karp, 2004; Kreibich and

Crowcroft, 2004; Singh et al., 2004; Zou et al., 2005). With the

increasing popularity of smartphones, smartphone-specific

vulnerabilities have attracted attackers but also the research

community. Initially, some studies (Dagon et al., 2004;

Dunham, 2009; Racic, 2006) attempted to understand the

threats and investigate the behavior of emerging attacks.

Malware for Android usually exploits system vulnerabilities to

get root access, and some malware succeeded in being

distributed through the official Android application repos

(2011). Motivations of malware authors include making

money (by sending SMSes or making calls to paid services),

stealing personal information, or disrupting the network

(through denial of service attacks) or user activity (by locking

the phone or deleting user data). Dunham (2009) analyzes a

threat model for smartphones, and proposes several potential

defense mechanisms. Dagon et al. (2004) overviews various

possible malicious attack types against smartphones and

categorizes adversarial goals. Racic (2006) explains a partic-

ular smartphone attack that happens through exploitation of

an SMS system vulnerability that can later be used to exhaust

available resources, e.g., the battery.
Fig. 6 e Network consumption by Secloud.

Please cite this article in press as: Zonouz S, et al., Secloud: A clou
smartphones, Computers & Security (2013), http://dx.doi.org/10.1
The rapidly increasing number of mobile malware strate-

gies prompted antivirus editors to offer solutions tailored for

mobile devices (Kaspersky mobile security, 2011). However,

those solutions are severely limited by the low computational

power of smartphones and the need to preserve battery life.

Researchers introduced various alternative solutions to miti-

gate themalware threat without having to heavily instrument

smartphones. The architecture of the SmartSiren system

(Cheng et al., 2007) enables smartphones to periodically send

activity logs to a centralized server that performs statistical

intrusion detection operations and sends alerts to phones

detected as compromised. VirusMeter (Liu et al., 2009) relies

on another strategy by building power consumption profiles

for smartphone applications and then running an anomaly-

based intrusion detection system on those profiles,

assuming that malware will generate different power con-

sumption signatures. Kirin (Enck et al., 2009) focuses on

certifying Android applications at install time to enable users

to make more informed decisions regarding the security risk

of smartphone applications. Kirin achieves that goal by

enhancing Android security permissions with a lightweight

security requirement checking mechanism.

Recently, there has been several complex host-based

smartphone-specific solutions presented to address the real-

time on-device intrusions detection problem (Dietz et al.,

2011; Enck et al., 2010; Bugiel et al., 2012). For instance, Quire

(Dietz et al., 2011) concentrates on detecting sensitive data

disclosure attacks where low-privileged (and malicious) ap-

plications can trick privileged applications to access confi-

dential personal data and send them back to the malicious

application. Quire tracks all the IPC calls and blocks such call

chains with potential data disclosure possibilities. L4Android

(Lange et al., 2011) makes use of virtualization to separate on-

device security solutions from potentially vulnerable appli-

cations aswell as to support guaranteed data provenance. The

main barrier in real-world deployment of such on-device vir-

tualization-based security solution is their performance and

efficiency on resource-limited smartphones, and hence their

usability. AppInspector (Gilbert et al., 2011) takes a more

fundamental approach to perform static binary analysis of

individual applications and detect potential security and pri-

vacy violations; however, such static analysis techniques can

result in high false positives and ignore runtime information

in detection of adversarial intrusions.

Oberheide et al. (2008b), describe a virtualized cloud secu-

rity service that offers remote file checking and remote
d-based comprehensive and lightweight security solution for
016/j.cose.2013.02.002

http://dx.doi.org/10.1016/j.cose.2013.02.002
http://dx.doi.org/10.1016/j.cose.2013.02.002

Table 3 e Feasibility analysis of Secloud deployment using the amazon EC2 cloud service.

Instance types CPU (GHz) Memory (GB) Num of phones Num of instances Total cost ($)

Small 1.2 1.7 6 1750 108,885

Large 2.4 7.5 11 875 217,770

Extra-large 9.6 15 46 219 109,009

High-memory extra-large 7.8 17.1 37 269 98,454

High-memory double extra-large 15.6 34.2 74 135 98,088

High-memory quadruple extra-large 31.2 68.4 149 67 196,176

High-CPU medium 6 1.7 7 1412 175,584

High-CPU extra-large 24 7 29 343 170,233

Cluster compute quadruple extra-large 40.2 23 96 104 121,804

Cluster GPU quadruple extra-large 40.2 22 92 109 167,554

c om p u t e r s & s e c u r i t y x x x (2 0 1 3) 1e1 312
application behavior analysis. Its main advantage over tradi-

tional antivirus solutions is that it saves energy, CPU, and

memory resources. The difference from our approach is that

user input is not taken into account during checking of the

dynamic behavior of new applications, which limits the

behavioral detection coverage. The idea of capturing and

replaying user input has been suggested by Flinn and Mao for

security purposes but not implemented or evaluated. The

work closest to our solution is (Portokalidis et al., 2010), in

which the authors describe how they built a full replica of the

phone in the cloud and instrumented it with security solu-

tions. The difference is that their tracing and replay occur at

the application level through execution trace. The advantage

over our approach is the elimination of nondeterministic in-

puts, but it involves significantly more overhead to transmit

compressed execution traces than to replicate only user input.

We first proposed the idea of input-driven cloud-based

intrusion detection in Houmansadr et al. (2011). This paper

builds on this preliminary idea by providing the full design,

details about the implementation, and evaluation results.
10. Conclusions

In this paper, we presented Secloud, a cloud-based service to

provide security and intrusion tolerance to resource-limited

smartphone devices. Secloud provides a powerful, yet

resource-friendly, protection for smartphones by performing

the security analysis on an emulated version of the devices,

running inside a cloud. We show that our platform is able to

leverage different types of security solutions to analyze

smartphone devices. We propose a personal and a

subscription-based deployment scenario for Secloud. As the

next important future work step, we are planning to address

the intrusion detection uncertainty problem so that Secloud

provides best-effort protection against smartphone attacks

that succeed to evade themonitoring solutions during some of

their penetration steps.

r e f e r e n c e s

Android application repository, http://www.androidpolice.com/
2011/03/01/; 2011.

Axelle Apvrille. Symbian worm Yxes: towards mobile botnets?,
<http://www.fortiguard.com/sites/default/files/EICAR2010_
Symbian-Yxes_Towards-Mobile-Botnets.pdf>.
Please cite this article in press as: Zonouz S, et al., Secloud: A clou
smartphones, Computers & Security (2013), http://dx.doi.org/10.1
Biever C. Phone viruses: how bad is it?, http://www.newscientist.
com/article.ns?id¼dn7080; 2005.

Boukerche A, Notare M. Behavior-based intrusion detection in
mobile phone systems. Journal Parallel & Distributed
Computing 2002;62(9):1476e90.

Bugiel S, Davi L, Dmitrienko A, Fischer T, Sadeghi A-R, Shastry B.
Towards taming privilege-escalation attacks on Android. In:
Proceedings of the 19th Annual Network & Distributed System
Security Symposium; 2012.

C. reports June 2012 U.S. mobile subscriber market share, http://
www.comscore.com/Insights/Press_Releases/2012/8/
comScore_Reports_June_2012_U.S._Mobile_Subscriber_
Market_Share.

Chen X, Andersen J, Mao Z, Bailey M, Nazario J. Towards
an understanding of anti-virtualization and anti-
debugging behavior in modern malware. In: DSN. IEEE;
2008. p. 177e86.

Cheng J, Wong S, Yang H, Lu S. Smartsiren: Virus detection and
alert for smartphones. In: Proceedings of the 5th international
conference on mobile systems, applications and services.
ACM; 2007. p. 258e71.

Dagon D, Martin T, Starner T. Mobile phones as computing
devices: the viruses are coming! IEEE Pervasive Computing
2004;3:11e5.

Dhamija R, Tygar JD, Hearst M. Why phishing works. In:
Conference on Human factors in computing systems (CHI
2006); 2006.

Dietz M, Shekhar S, Pisetsky Y, Shu A, Wallach DS. Quire:
lightweight provenance for smart phone operating systems.
In: 20th USENIX Security Symposium; 2011.

Dunham K. Mobile malware attacks and defense. Elsevier Inc.;
2009.

Dunlap GW, King ST, Cinar S, Basrai MA, Chen PM. Revirt:
enabling intrusion analysis through virtual-machine logging
and replay. In: Proceedings of the 2002 Symposium on
Operating Systems Design and Implementation (OSDI); 2002.
p. 211e24.

Enck W, Ongtang M, McDaniel P. On lightweight mobile phone
application certification. In: Proceedings of the 16th ACM
conference on computer and communications security. ACM;
2009. p. 235e45.

Enck W, Gilbert P, Chun B-G, Cox LP, Jung J, McDaniel P, et al.
Taintdroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. In: Proceedings of the 9th
USENIX conference on Operating systems design and
implementation, OSDI’10. Berkeley, CA, USA: USENIX
Association. p. 1e6. URL, http://dl.acm.org/citation.cfm?
id¼1924943.1924971; 2010.

J. Flinn, Z. Mao, Can deterministic replay be an enabling tool for
mobile computing?, Proceedings of the 12th workshop on
Mobile Computing Systems and Applications (HotMobile).

Forrest S, Hofmeyr S, Somayaji A. The evolution of system-call
monitoring. In: Proceedings of the 2008 annual computer
d-based comprehensive and lightweight security solution for
016/j.cose.2013.02.002

http://www.androidpolice.com/2011/03/01/
http://www.androidpolice.com/2011/03/01/
http://www.fortiguard.com/sites/default/files/EICAR2010_Symbian-Yxes_Towards-Mobile-Botnets.pdf
http://www.fortiguard.com/sites/default/files/EICAR2010_Symbian-Yxes_Towards-Mobile-Botnets.pdf
http://www.newscientist.com/article.ns%3fid%3ddn7080
http://www.newscientist.com/article.ns%3fid%3ddn7080
http://www.newscientist.com/article.ns%3fid%3ddn7080
http://www.comscore.com/Insights/Press_Releases/2012/8/comScore_Reports_June_2012_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Insights/Press_Releases/2012/8/comScore_Reports_June_2012_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Insights/Press_Releases/2012/8/comScore_Reports_June_2012_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Insights/Press_Releases/2012/8/comScore_Reports_June_2012_U.S._Mobile_Subscriber_Market_Share
http://dl.acm.org/citation.cfm%3fid%3d1924943.1924971
http://dl.acm.org/citation.cfm%3fid%3d1924943.1924971
http://dl.acm.org/citation.cfm%3fid%3d1924943.1924971
http://dx.doi.org/10.1016/j.cose.2013.02.002
http://dx.doi.org/10.1016/j.cose.2013.02.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 3) 1e1 3 13
security applications conference, ACSAC ’08. Washington DC,
USA: IEEE Computer Society; 2008. p. 418e30.

Gilbert P, Chun B-G, Cox LP, Jung J. Vision: automated
security validation of mobile apps at app markets. In:
Proceedings of the second international workshop on
mobile cloud computing and services, MCS’11. New York,
NY, USA: ACM; 2011. p. 21e6. http://dx.doi.org/10.1145/
1999732.1999740.

Guo C, Wang HJ, Zhu W. Smart-phone attacks and defenses. In:
HotNets III; 2004.

Houmansadr A, Zonouz S, Berthier R. A cloud-based intrusion
detection and response system for mobile phones. In:
Dependable Systems and Networks Workshops (DSN-W);
2011. p. 31e2. IEEE/IFIP 41st international conference on IEEE,
2011.

Kaspersky mobile security, http://www.kaspersky.com/mobile_
downloads/; 2011.

Kim H, Karp B. Autograph: toward automated, distributed worm
signature detection. In: Proceedings of the 13th conference on
USENIX security symposium. Berkeley, CA, USA: USENIX
Association; 2004. p. 19. 19.

J. Kirk. New android malware texts premium-rate numbers.
ComputerWorld.

Kreibich C, Crowcroft J. Honeycomb: creating intrusion detection
signatures using honeypots. SIGCOMM CCR 2004;34:51e6.

Lange M, Liebergeld S, Lackorzynski A, Warg A, Peter M.
L4android: a generic operating system framework for secure
smartphones. In: Proceedings of the 1st ACM workshop on
security and privacy in smartphones and mobile devices,
SPSM ’11. New York, NY, USA: ACM; 2011. p. 39e50. http://
dx.doi.org/10.1145/2046614.2046623.

Leech M, Ganis M, Lee Y, Kuris R, Koblas D, Jones L. RFC 1928:
SOCKS Protocol Version 5; Apr. 1996.

V. Library. <http://www.viruslibrary.com/>.
Liu L, Yan G, Zhang X, Chen S. Virusmeter: preventing your

cellphone from spies. In: RAID. Springer; 2009. p. 244e64.
Miettinen M, Halonen P. Host-based intrusion detection for

advanced mobile devices. Advance Information Networking
and Applications 2006;2:72e6.

Oberheide J, Cooke E, Jahanian F. Cloudav: N-version antivirus in
the network cloud. In: van Oorschot PC, editor. USENIX
security symposium. USENIX Association; 2008a. p. 91e106.

Oberheide J, Veeraraghavan K, Cooke E, Flinn J, Jahanian F.
Virtualized in-cloud security services for mobile devices. In:
Proceedings of the first workshop on virtualization in mobile
computing; 2008b. p. 31e5.

S. Perez. Over 50 DroidDream malware apps removed from
android market http://www.readwriteweb.com.

Porras P, Saidi H, Yegneswaran V. An analysis of the iKeeB iPhone
botnet. MobiSec 2010:141e52.

Portokalidis G, Homburg P, Anagnostakis K, Bos H. Paranoid
android: versatile protection for smartphones. In: Proceedings
of the 26th Annual Computer Security Applications
Conference; 2010. p. 347e56.

Racic R. Exploiting mms vulnerabilities to stealthily exhaust
mobile phone’s battery. In: SecureComm; 2006. p. 1e10.

Rageagainsthecage. <http://downloadsquad.switched.com/tag/
rageagainstthecage/>(2010).

Roesch M. Snort: lightweight intrusion detection for networks. In:
USENIX-LISA; 1999. p. 229e38.

Schlegel R, Zhang K, Zhou X, Intwala M, Kapadia A, Wang X.
Soundminer: a stealthy and context-aware sound trojan for
smartphones. In: NDSS; 2011.

Singh S, Estan C, Varghese G, Savage S. Automated worm
fingerprinting. In: SOSP; 2004. p. 4.

The terminal-emulator application, https://market.android.com/
details?id¼jackpal.androidterm&hl¼en; 2010.
Please cite this article in press as: Zonouz S, et al., Secloud: A clou
smartphones, Computers & Security (2013), http://dx.doi.org/10.1
Wotring B, Potter B, Ranum M, Wichmann R. Host integrity
monitoring using Osiris and Samhain. Syngress Publishing;
2005.

Yap TS, Ewe HT. A mobile phone malicious software detection
model with behavior checker. In: Web and communication
technologies and Internet-related social issues, Vol. 3597;
2005. p. 57e65.

Zhao B, Xu Z, Chi C, Zhu S, Cao G. Mirroring smartphones for
good: a feasibility study. In: Mobiquitous; 2010.

Zou CC, Gong W, Towsley D, Gao L. The monitoring and early
detection of internet worms. IEEE/ACM Trans. Netw 2005;13:
961e74.

Saman Zonouz is an Assistant Professor in the Electrical and
Computer Engineering Department at the University of Miami. He
received his Ph.D. in Computer Science from the University of Il-
linois at Urbana-Champaign in 2011. He has worked on intrusion
response and recovery, information flow-based security metrics
for power-grid critical infrastructures, online digital forensics
analysis and monitorless recoverable applications. His research
interests include: computer security and survivable systems,
control/game theory, intrusion response and recovery systems,
automated intrusion forensics analysis, information flow
analysis-based security metrics, intrusion detection and correla-
tion, and trustworthy power-grid critical infrastructures.

Amir Houmansadr is a Ph.D. candidate in the Department of
Electrical and Computer Engineering at the University of Illinois at
Urbana-Champaign, advised by Prof. Nikita Borisov within the
Hatswitch research group. Amir earned his M.Sc. and B.Sc. de-
grees from the Electrical Engineering Department at the Sharif
University of Technology in 2005 and 2003, respectively. His
research revolves around various network security and privacy
problems. Amir has been involved in research projects, including
stealthy anonymous communications, social network botnets,
covert timing channels, and smartphone security.

Robin Berthier is a research scientist at the University of Illinois at
Urbana-Champaign, working with Prof. William H. Sanders in the
Information Trust Institute. Robin graduated from the Reliability
Engineering Department at the University of Maryland in 2009. His
doctoral dissertation introduced a new architecture to increase
the scalability of high-interaction honeypots, and combined
network datasets of different granularities to offer unique attack
forensics capabilities to security analysts. His current research
interests include advanced intrusion detection systems and the
security of critical infrastructures.

Nikita Borisov is an assistant professor of Electrical and Computer
Engineering at the University of Illinois. His research interests are
online privacy and Internet-scale distributed systems. He is the
co-designer of the “off-the-record” (OTR) instant messaging pro-
tocol and was responsible for the first public analysis of 802.11
security. Prof. Borisov received his PhD from the University of
California, Berkeley in 2005 and a BMath from the University of
Waterloo in 1998.

William H. Sanders is a Donald Biggar Willett Professor of Engi-
neering and the Director of the Coordinated Science Laboratory at
the University of Illinois at Urbana-Champaign. He is a Fellow of
the IEEE and the ACM, a past Chair of the IEEE Technical Com-
mittee on Fault-Tolerant Computing, and past Vice-Chair of the
IFIP Working Group 10.4 on Dependable Computing. He was the
founding Director of the Information Trust Institute (www.iti.
illinois.edu) at Illinois. Dr. Sanders’s research interests include
secure and dependable computing and security and dependability
metrics and evaluation, with a focus on critical infrastructures.
d-based comprehensive and lightweight security solution for
016/j.cose.2013.02.002

http://www.kaspersky.com/mobile_downloads/
http://www.kaspersky.com/mobile_downloads/
http://www.viruslibrary.com/
http://www.readwriteweb.com
http://downloadsquad.switched.com/tag/rageagainstthecage/
http://downloadsquad.switched.com/tag/rageagainstthecage/
http://https://market.android.com/details?id%3Djackpal.androidterm&hl%3Den
http://https://market.android.com/details?id%3Djackpal.androidterm&hl%3Den
http://https://market.android.com/details?id%3Djackpal.androidterm&hl%3Den
http://https://market.android.com/details?id%3Djackpal.androidterm&hl%3Den
http://www.iti.illinois.edu
http://www.iti.illinois.edu
http://dx.doi.org/10.1016/j.cose.2013.02.002
http://dx.doi.org/10.1016/j.cose.2013.02.002

	Secloud: A cloud-based comprehensive and lightweight security solution for smartphones
	1. Introduction
	1.1. Paper's scope
	1.2. Contributions

	2. Secloud's architecture overview
	3. Client agent
	3.1. Implementation

	4. Secloud's emulator
	4.1. Security analysis deployed by the emulator
	4.1.1. Virus scanning
	4.1.2. File integrity checking
	4.1.3. System-call monitoring
	4.1.4. Network intrusion detection and response

	4.2. User notification
	4.2.1. Informing Secloud's client agent
	4.2.2. Email notification

	4.3. Response and prevention
	4.3.1. File removal
	4.3.2. Process termination
	4.3.3. Periodic backups
	4.3.4. Network filtering
	4.3.5. Device quarantining

	5. Secloud's proxy
	6. Deployment scenarios
	6.1. Comparison

	7. Discussions
	7.1. File-system consistency
	7.2. User privacy
	7.3. Environment resiliency
	7.4. Encryption
	7.5. Attack evasions

	8. Evaluation
	8.1. Accuracy
	8.2. Efficiency
	8.3. Feasibility

	9. Related work
	10. Conclusions
	References

